化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2859-2871.DOI: 10.11949/0438-1157.20241285

• 过程系统工程 • 上一篇    下一篇

基于二次分解和BiLSTM的污水厂出水COD浓度预测

张京新1(), 何皎洁1(), 蔡庆旺1, 康子怡1, 杨玉思1,2, 王彤1, 曹仙桃3, 杨利伟1()   

  1. 1.长安大学建筑工程学院,陕西 西安 710061
    2.西安济源水用设备技术开发有限责任公司,陕西 西安 710000
    3.西安市二次供水管理中心,陕西 西安 710016
  • 收稿日期:2024-11-12 修回日期:2025-12-12 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 何皎洁,杨利伟
  • 作者简介:张京新(2000—),男,硕士研究生,ecotoach@163.com
  • 基金资助:
    国家自然科学基金项目(42020619)

Prediction of COD concentration in wastewater treatment plant effluent based on secondary decomposition and BiLSTM

Jingxin ZHANG1(), Jiaojie HE1(), Qingwang CAI1, Ziyi KANG1, Yusi YANG1,2, Tong WANG1, Xiantao CAO3, Liwei YANG1()   

  1. 1.School of Civil Engineering, Chang’an University, Xi’an 710061, Shaanxi, China
    2.Xi’an Jiyuan Water Equipment Technology Development Co. , Ltd. , Xi’an 710000, Shaanxi, China
    3.Xi’an Domestic Water Secondary Distribution Center, Xi’an 710016, Shaanxi, China
  • Received:2024-11-12 Revised:2025-12-12 Online:2025-06-25 Published:2025-07-09
  • Contact: Jiaojie HE, Liwei YANG

摘要:

针对某污水处理厂出水化学需氧量(chemical oxygen demand,COD)浓度预测问题,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、变分模态分解(variational mode decomposition,VMD)二次分解、双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)的出水COD预测模型,并引入吸血水蛭优化算法(blood-sucking leech optimizer,BSLO)对模型进行优化。首先,设计CEEMDAN算法对原始出水浓度序列进行分解,将复杂的时间序列分解为若干相对简单的子序列;然后,应用VMD对具有不稳定的高频不规则波形的子序列进行二次分解;最后,应用BSLO对BiLSTM进行优化,并比较未分解、一次分解、二次分解以及无优化算法下80个模型在污水厂出水COD浓度预测问题中的性能。结果表明,优化算法的引入提高了模型预测的性能,BSLO模型具有更快的速度和更高的精度;相比于其他模型,基于二次分解的BSLO+CEEMDAN+VMD+BiLSTM模型能够有效克服实测数据非线性和复杂性问题,在该厂出水COD预测中表现出优秀的预测精度和泛化能力。

关键词: 算法, 预测, 废水, 优化, 污水处理

Abstract:

For the prediction of chemical oxygen demand (COD) concentration in the effluent of a sewage treatment plant, a COD prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) secondary decomposition and bidirectional long short-term memory (BiLSTM) neural network is proposed, and the blood-sucking optimization algorithm (blood-sucking leech optimizer, BSLO) is used to optimize the model. Firstly, design the CEEMDAN algorithm to decompose the original effluent concentration sequence, breaking down the complex time series into several relatively simple sub sequences. Then, VMD is applied to perform quadratic decomposition on subsequences with unstable high-frequency irregular waveforms. Finally, BSLO was applied to optimize BiLSTM, and the performance of 80 models in predicting COD concentration in wastewater treatment plant effluent was compared under undecomposed, first decomposed, second decomposed, and non optimized algorithms. The results show that the introduction of optimization algorithms improves the performance of model prediction, and the BSLO model has faster speed and higher accuracy. Compared with other models, the BSLO+CEEMDAN+VMD+BiLSTM model based on quadratic decomposition can effectively overcome the nonlinearity and complexity of measured data, and exhibits excellent prediction accuracy and generalization ability in the COD prediction of the effluent from the plant.

Key words: algorithm, prediction, waste water, optimization, wastewater treatment

中图分类号: