• •
周雁红1(
), 杨子蛟2, 陈雅鑫1, 邓洲1, 冯雨1, 伍子呈1, 卢诗雨1, 张光亚1(
)
收稿日期:2025-09-18
修回日期:2025-12-16
出版日期:2025-12-19
通讯作者:
张光亚
作者简介:周雁红(1996—),女,博士研究生,zhouyh1026@126.com
Yanhong ZHOU1(
), Zijiao YANG2, Yaxin CHEN1, Zhou DENG1, Yu FENG1, Zicheng WU1, Shiyu LU1, Guangya ZHANG1(
)
Received:2025-09-18
Revised:2025-12-16
Online:2025-12-19
Contact:
Guangya ZHANG
摘要:
分子粘合剂SpyCatcher/SpyTag的发现为酶免预纯化共价固定化的研究提供了契机。传统方法常通过有机试剂将SpyCatcher修饰于载体上,功能化的载体能自发识别并特异共价结合含SpyTag的目标酶,从而在无需预纯化的前提下实现酶共价固定。为了减少使用有机试剂,开发更温和、高效且酶空间取向更可控的新策略,基于仿生矿化制备SpyCatcher功能化的无机载体和利用酚类化合物涂层制备SpyCatcher功能化的无机或有机载体应运而生。本文综述了SpyCatcher/SpyTag介导的酶免预纯化共价固定化常规方法,同时结合本课题组的研究成果,重点介绍了仿生矿化和酚类化合物介导的SpyCatcher/SpyTag功能化策略,并将其用于酶免预纯化共价固定化。最后,对今后固定化策略的可能研究方向进行了展望,以期为酶共价固定化新技术平台的研发提供参考。
中图分类号:
周雁红, 杨子蛟, 陈雅鑫, 邓洲, 冯雨, 伍子呈, 卢诗雨, 张光亚. SpyCatcher/SpyTag介导的酶免预纯化共价固定化研究进展[J]. 化工学报, DOI: 10.11949/0438-1157.20251050.
Yanhong ZHOU, Zijiao YANG, Yaxin CHEN, Zhou DENG, Yu FENG, Zicheng WU, Shiyu LU, Guangya ZHANG. Advances in SpyCatcher/SpyTag-mediated covalent immobilization of enzymes free pre-purification[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251050.
图1 SpyCatcher/SpyTag介导的酶免预纯化共价固定化策略(以磁性粒子为例)
Fig.1 SpyTag/SpyCatcher-mediated enzyme covalent immobilization strategies-free of prepurification(Demonstration of tertiary structure of SpyTag and SpyCatcher binding): (a) (1) SpyTag was chemically covalently immobilized onto a carrier[12]; (2) SpyCatcher was immobilized onto the carrier by ELPs-mediated biomimetic mineralization[16]; (3) SpyCatcher was immobilized onto the carrier by chelation between phenolic compounds and metal ions[17]; (b) Formation of isopeptide bonds
| 表面偶联基团及其化学结构式 | 使用到的典型有机试剂 | 参考文献 |
|---|---|---|
环氧基
| 环氧氯丙烷(Epichlorohydrin, ECH),二甲亚砜,3-(三甲氧基甲硅烷基)丙酯(3-(Trimethoxysilyl) propyl ester, TMSPMA)和乙酸乙酯 | [ |
醛基
| 戊二醛 | [ |
羧基
| EDC和NHS | [ |
羟基
| 1,1 ' -羰基二咪唑(1,1'-Carbonyldiimidazole, CDI) | [ |
溴化氢
| EDC和NHS | [ |
表1 常用于共价结合SpyCatcher/SpyTag的载体修饰方式
Table 1 Common carrier modifications for covalently binding SpyCatcher/SpyTag
| 表面偶联基团及其化学结构式 | 使用到的典型有机试剂 | 参考文献 |
|---|---|---|
环氧基
| 环氧氯丙烷(Epichlorohydrin, ECH),二甲亚砜,3-(三甲氧基甲硅烷基)丙酯(3-(Trimethoxysilyl) propyl ester, TMSPMA)和乙酸乙酯 | [ |
醛基
| 戊二醛 | [ |
羧基
| EDC和NHS | [ |
羟基
| 1,1 ' -羰基二咪唑(1,1'-Carbonyldiimidazole, CDI) | [ |
溴化氢
| EDC和NHS | [ |
| 生物大分子类型 | 矿化材料 | 关键生物物质 |
|---|---|---|
| 生物矿化相关蛋白 | 四氧化三铁纳米颗粒 | Mms家族[ |
| 碳酸钙颗粒 | 碳酸酐酶 [ | |
| 氨基酸 | 铁纳米颗粒 | 丝氨酸[ |
| 碳酸钙 | 天冬氨酸[ | |
| 金纳米颗粒 | 半胱氨酸[ | |
| 银纳米颗粒 | 谷氨酸[ | |
| 自组装肽 | Cu纳米簇 | CCYGGPKKKRKVG[ |
| 金纳米颗粒 | YYAYY[ | |
| SiO2纳米管 | Ac-FFFFTTTTE-COOH[ | |
| 人工设计蛋白 | 磁性纳米颗粒 | ELPs[ |
| SiO2纳米颗粒 | ELPs[ |
表2 常见的生物大分子仿生矿化实例
Table 2 Bio-macromolecules for biomimetic mineralization
| 生物大分子类型 | 矿化材料 | 关键生物物质 |
|---|---|---|
| 生物矿化相关蛋白 | 四氧化三铁纳米颗粒 | Mms家族[ |
| 碳酸钙颗粒 | 碳酸酐酶 [ | |
| 氨基酸 | 铁纳米颗粒 | 丝氨酸[ |
| 碳酸钙 | 天冬氨酸[ | |
| 金纳米颗粒 | 半胱氨酸[ | |
| 银纳米颗粒 | 谷氨酸[ | |
| 自组装肽 | Cu纳米簇 | CCYGGPKKKRKVG[ |
| 金纳米颗粒 | YYAYY[ | |
| SiO2纳米管 | Ac-FFFFTTTTE-COOH[ | |
| 人工设计蛋白 | 磁性纳米颗粒 | ELPs[ |
| SiO2纳米颗粒 | ELPs[ |
| 固定化策略 | 有机试剂用量 | 重复使用性 | 载体类型 | 反应 时间 | 参考文献 |
|---|---|---|---|---|---|
| 常规化学修饰 | 10% 琥珀酸酐的 DMF | PNGase F活性大约为初始值的78.5% (重复使用5次) | 磁性纳米粒子 | 27 h | [ |
| 0.025 %戊二醛 | 甲酸脱氢酶活性大约为初始值的70% (重复使用10次) | 细菌纤维素 | 10 h | [ | |
| 0.05 %戊二醛 | 甲酸氢化酶活性为初始值的51.7% (重复使用8次) | 二氧化硅 | 3 h | [ | |
| 仿生矿化介导 | 0 | 地衣多糖酶活性为初始值的85.7% (重复使用10次) | 二氧化硅 | 5 min | [ |
| 0 | 地衣多糖酶活性为初始值的72.7% (重复使用10次) | 磁性纳米粒子 | 12 min | [ | |
酚类化合物 介导 | 0 | 地衣多糖酶活性为初始值的77.5% (重复使用8次) | 尼龙膜 | 1 h | [ |
| 0 | 地衣多糖酶活性为初始值的78.81% (重复使用8次) | 磁性粒子 | 1 h | [ |
表3 SpyCatcher/SpyTag免预纯化的共价固定化策略与其他策略的对比
Table 3 Comparison of the covalent immobilization strategies based on the SpyCatcher/SpyTag system and others
| 固定化策略 | 有机试剂用量 | 重复使用性 | 载体类型 | 反应 时间 | 参考文献 |
|---|---|---|---|---|---|
| 常规化学修饰 | 10% 琥珀酸酐的 DMF | PNGase F活性大约为初始值的78.5% (重复使用5次) | 磁性纳米粒子 | 27 h | [ |
| 0.025 %戊二醛 | 甲酸脱氢酶活性大约为初始值的70% (重复使用10次) | 细菌纤维素 | 10 h | [ | |
| 0.05 %戊二醛 | 甲酸氢化酶活性为初始值的51.7% (重复使用8次) | 二氧化硅 | 3 h | [ | |
| 仿生矿化介导 | 0 | 地衣多糖酶活性为初始值的85.7% (重复使用10次) | 二氧化硅 | 5 min | [ |
| 0 | 地衣多糖酶活性为初始值的72.7% (重复使用10次) | 磁性纳米粒子 | 12 min | [ | |
酚类化合物 介导 | 0 | 地衣多糖酶活性为初始值的77.5% (重复使用8次) | 尼龙膜 | 1 h | [ |
| 0 | 地衣多糖酶活性为初始值的78.81% (重复使用8次) | 磁性粒子 | 1 h | [ |
图3 基于ELPs-SpyCatcher和酚类化合物介导免纯化的酶共价固定化的应用场景[16]
Fig. 3 Prospects for applications based on ELPs-SpyCatcher and phenolic compounds mediating covalent immobilization free of pre-purification[16]
| [1] | Maghraby Y R, El-Shabasy R M, Ibrahim A H, et al. Enzyme immobilization technologies and industrial applications[J]. ACS Omega, 2023, 8(6): 5184-5196. |
| [2] | Abellanas-Perez P, Carballares D, Rocha-Martin J, et al. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support[J]. Biotechnology Progress, 2024, 40(1): e3394. |
| [3] | Bié J, Sepodes B, Fernandes P C B, et al. Enzyme immobilization and co-immobilization: main framework, advances and some applications[J]. Processes, 2022, 10(3): 494. |
| [4] | Artico M, Roux C, Peruch F, et al. Grafting of proteins onto polymeric surfaces: a synthesis and characterization challenge[J]. Biotechnology Advances, 2023, 64: 108106. |
| [5] | Labrou N E. Protein purification: an overview[J]. Methods in Molecular Biology, 2014, 1129: 3-10. |
| [6] | Banki M R, Wood D W. Inteins and affinity resin substitutes for protein purification and scale up[J]. Microbial Cell Factories, 2005, 4: 32. |
| [7] | 宋浩雷, 欧阳亚萍, 原泉, 等. 多酶一步纯化共固定系统的构建及催化不对称还原合成手性醇的研究[J]. 现代化工, 2023, 43(11): 104-110. |
| Song H, Ouyang Y P, Yuan Q, et al. Construction of a multi-enzyme one-step purification co-immobilization system to catalyze asymmetric reduction for synthesis of chiral alcohols[J]. Modern Chemical Industry, 2023, 43(11): 104-110. | |
| [8] | Liu J Q, Bai J, Liu Y T, et al. Structure-guided design of a Zbasic2-mediated dual-enzyme nanoreactor for chiral amine synthesis[J]. International Journal of Biological Macromolecules, 2025, 290: 139052. |
| [9] | Qin Z, Lin S, Qiu Y J, et al. One-step immobilization-purification of enzymes by carbohydrate-binding module family 56 tag fusion[J]. Food Chemistry, 2019, 299: 125037. |
| [10] | Barbosa O, Ortiz C, Berenguer-Murcia Á, et al. Strategies for the one-step immobilization–purification of enzymes as industrial biocatalysts[J]. Biotechnology Advances, 2015, 33(5): 435-456. |
| [11] | Hatlem D, Trunk T, Linke D, et al. Catching a SPY: using the SpyCatcher-SpyTag and related systems for labeling and localizing bacterial proteins[J]. International Journal of Molecular Sciences, 2019, 20(9): 2129. |
| [12] | Zhang L, Wang W H, Yang Y Q, et al. Spontaneous and site-specific immobilization of PNGase F via spy chemistry[J]. RSC Advances, 2023, 13(41): 28493-28500. |
| [13] | Hagan R M, Björnsson R, McMahon S A, et al. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys–asp isopeptide bond[J]. Angewandte Chemie International Edition, 2010, 49(45): 8421-8425. |
| [14] | Cai M M, Ni Z F, Sun Z K, et al. The SpyTag/SpyCatcher system: precise regulation of covalent conjugation and expansion of application scenarios[J]. Biotechnology Journal, 2025, 20(10): e70131. |
| [15] | 刘欣. 基于类弹性蛋白多肽(ELPs)仿生硅化制备包硅磁性微球及其用于酶自固定化[D]. 泉州: 华侨大学, 2021. |
| Liu X. Preparation of silicon-coated magnetic microspheres based on biomimetic siliconization of elastin-like polypeptides (ELPs) and used in enzyme self-immobilization[D]. Quanzhou: Huaqiao University, 2021. | |
| [16] | Zhou Y H, Yang Z J, Zhou R, et al. Peptide-inspired one-step synthesis of surface-functionalized Fe3O4 magnetic nanoparticles for oriented enzyme immobilization and biocatalytic applications[J]. ACS Applied Nano Materials, 2022, 5(6): 8260-8270. |
| [17] | Zhou Y H, Yang Z J, Chen Y X, et al. Green surface modification of nylon membrane to site-specifically co-immobilize xylanase and lichenase for clean production of reducing sugar and juice clarification[J]. Journal of Cleaner Production, 2025, 486: 144438. |
| [18] | Beyler-Çigil A, Danis O, Sarsar O, et al. Optimizing the immobilization conditions of β-galactosidase on UV-cured epoxy-based polymeric film using response surface methodology[J]. Journal of Food Biochemistry, 2021, 45(4): e13699. |
| [19] | Dong M X, Shu Y K, Gao R, et al. Application of magnetic aldehyde-functionalized ionic liquids for immobilization of acetylcholinesterase[J]. International Journal of Biological Macromolecules, 2025, 309: 143101. |
| [20] | Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review[J]. International Journal of Biological Macromolecules, 2020, 161: 550-560. |
| [21] | Ma X Z, Xing S Q, Liu X Y, et al. A customized multienzyme cascade immobilization system for efficiently biosynthesizing allitol[J]. Food Bioscience, 2025, 68: 106578. |
| [22] | Gallus S, Mittmann E, Weber A J, et al. An immobilised silicon-carbon bond-forming enzyme for anaerobic flow biocatalysis[J]. ChemCatChem, 2023, 15(9): e202300061. |
| [23] | Peng F, Chen Q S, Zong M H, et al. Sequential co-immobilization of multienzyme nanodevices based on SpyCatcher and SpyTag for robust biocatalysis[J]. Molecular Catalysis, 2021, 510: 111673. |
| [24] | Wang R L, Ma Z Y, Zhu M F. Sulfonium-based polymers: underestimated moieties for structural modification in versatile bioapplications[J]. Biomacromolecules, 2025, 26(7): 3998-4016. |
| [25] | Li Y Q, Chang Y G, Qiu J Y, et al. Protein-templated macroporous agarose microspheres as a high-performance chromatographic medium for protein purification[J]. Carbohydrate Polymers, 2025, 353: 123266. |
| [26] | Yan J, Zhao C W, Ma Y H, et al. Covalently attaching hollow silica nanoparticles on a COC surface for the fabrication of a three-dimensional protein microarray[J]. Biomacromolecules, 2022, 23(6): 2614-2623. |
| [27] | 张欣宜, 蒋艺, 刘洪玲, 等. SpyTag/SpyCatcher作用于多酶固定化系统的应用研究[J]. 齐鲁工业大学学报, 2022(2): 20-28. |
| Zhang X Y, Jiang Y, Liu H L, et al. Application study of SpyTag/SpyCatcher on multienzyme immobilization system[J]. Journal of Qilu University of Technology, 2022(2): 20-28. | |
| [28] | Nagar S, Sindhu M, Kumari K, et al. Synergistic hydrolysis of lignocellulosic biomass using co-immobilization of tri-enzymes on chitosan-magnetite nanoparticle beads[J]. Preparative Biochemistry & Biotechnology, 2025, 55(9): 1208-1220. |
| [29] | Varan N E, Yildirim D, Toprak A, et al. Effect of the activation strategy of nickel oxide-multi-walled carbon nanotubes on the immobilization of xylanase for synthesis of xylooligosaccharides[J]. Biotechnology and Applied Biochemistry, 2025, 72(4): 911-923. |
| [30] | Melchor-Moncada J J, Vasquez-Giraldo S, Zuluaga-Vélez A, et al. Bioconjugation of serratiopeptidase with titanium oxide nanoparticles: improving stability and antibacterial properties[J]. Journal of Functional Biomaterials, 2024, 15(10): 300. |
| [31] | Sánchez-Álvarez A, Quintanilla-Villanueva G E, Rodríguez-Quiroz O, et al. Use of laccase enzymes as bio-receptors for the organic dye methylene blue in a surface plasmon resonance biosensor[J]. Sensors, 2024, 24(24): 8008. |
| [32] | Wu C X, Zhang N, Li H L, et al. Preparation of immobilized xanthine oxidase with magnetic metal–organic framework and its application in screening of active ingredients in traditional Chinese medicine[J]. Microchimica Acta, 2025, 192(5): 319. |
| [33] | Minami K, Yusakul G, Fujii S, et al. Rapid magnetic particles-based enzyme immunoassay for the quality control of Glycyrrhiza spp. based on glycyrrhizin content[J]. Fitoterapia, 2021, 148: 104794. |
| [34] | Homaei A. Enhanced activity and stability of papain immobilized on CNBr-activated sepharose[J]. International Journal of Biological Macromolecules, 2015, 75: 373-377. |
| [35] | Wang L, Sun Y, Zhang H, et al. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 302: 123003. |
| [36] | 梁淼, 余涛, 高翔, 等. 基于蛋白及其组装体的金属纳米复合材料构建[J]. 化工学报, 2018, 69(11): 4553-4565, 4930. |
| Liang M, Yu T, Gao X, et al. Fabrication of metal nanocomposites based on proteins and their self-assemblies as templates[J]. CIESC Journal, 2018, 69(11): 4553-4565, 4930. | |
| [37] | 周雁红, 李夏兰, 张光亚. 生物大分子介导仿生矿化制备磁性纳米粒子的研究进展[J]. 化工进展, 2021, 40(5): 2719-2729. |
| Zhou Y H, Li X L, Zhang G Y. Research progress of biomacromolecular-mediated biomimetic mineralization for the preparation of magnetic nanoparticles[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2719-2729. | |
| [38] | Abdulmajeed Abdulmajeed A T, Gokoglan H, Ozdogru E, et al. Utilizing bovine carbonic anhydrase II for enzyme-induced carbonate precipitation (EICP) in recycled concrete aggregate[J]. Environmental Research, 2025, 284: 122255. |
| [39] | Sanyal S K, Scott C, Nagaraj V, et al. Harnessing the biomolecular mechanisms of marine biomineralisation for carbon sequestration[J]. Biotechnology Advances, 2025, 83: 108644. |
| [40] | Deng Y Y, Liu X, Wu C Q, et al. Biomimetic mineralization of calcium carbonate under synergistic regulation of Sr2+ and egg-white proteins[J]. Materials Letters, 2023, 346: 134544. |
| [41] | Liu Y C, Zhang Y X, Yang Z, et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors[J]. Nature Communications, 2018, 9: 5302. |
| [42] | Demichelis R, Armstrong B I, Raiteri P, et al. Atomistic insight into the interaction of aspartic acid species with calcium carbonate: model development[J]. Faraday Discussions, 2025, 261: 81-98. |
| [43] | Ranaldi M, Parisi M, Battocchio C, et al. Chiral gold nanoparticles via L- or D-cysteine functionalization: synthesis and characterization[J]. ChemPlusChem, 2025, 90(9): e202500027. |
| [44] | Wang J, Wang D J, Su Z, et al. Green synthesis of chitosan/glutamic acid/agarose/Ag nanocomposite hydrogel as a new platform for colorimetric detection of Cu ions and reduction of 4-nitrophenol[J]. International Journal of Biological Macromolecules, 2024, 259: 129394. |
| [45] | Wang Y L, Cui Y Y, Liu R, et al. Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines[J]. Chemical Communications, 2013, 49(91): 10724-10726. |
| [46] | Zhu H, Wang H H, Shi B B, et al. Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy[J]. Nature Communications, 2019, 10: 2412. |
| [47] | Duan Y Y, Han L, Zhang J L, et al. Optically active nanostructured ZnO films[J]. Angewandte Chemie International Edition, 2015, 54(50): 15170-15175. |
| [48] | Liu G Z, Yuan H, Chen Y X, et al. Magnetic silica-coated cutinase immobilized via ELPs biomimetic mineralization for efficient nano-PET degradation[J]. International Journal of Biological Macromolecules, 2024, 279: 135414. |
| [49] | Luckarift H R, Spain J C, Naik R R, et al. Enzyme immobilization in a biomimetic silica support[J]. Nature Biotechnology, 2004, 22(2): 211-213. |
| [50] | Jo B H, Seo J H, Yang Y J, et al. Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration[J]. ACS Catalysis, 2014, 4(12): 4332-4340. |
| [51] | Abdelhamid M A A, Baek Y, Ki M R, et al. Self-encapsulation and controlled release of recombinant proteins using novel silica-forming peptides as fusion linkers[J]. International Journal of Biological Macromolecules, 2019, 125: 1175-1183. |
| [52] | Baek Y, Ki M R, Sung P, et al. Novel silica-forming peptides derived from Ectocarpus siliculosus [J]. Process Biochemistry, 2017, 58: 193-198. |
| [53] | Ha M, Baek Y, Ki M R, et al. Novel silica forming peptide, RSGH, from Equus caballus: Its unique biosilica formation under acidic conditions[J]. Biochemical Engineering Journal, 2020, 153: 107389. |
| [54] | 付晓平, 王文研, 张光亚. 以类弹性蛋白多肽为标签的表达质粒构建及其用于木聚糖酶的非色谱纯化[J]. 微生物学报, 2012, 52(1): 90-95. |
| Fu X P, Wang W Y, Zhang G Y. Construction of an expression vector with elastin-like polypeptide tag to purify xylanase[J]. Acta Microbiologica Sinica, 2012, 52(1): 90-95. | |
| [55] | Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, et al. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry[J]. Biotechnology Advances, 2020, 45: 107653. |
| [56] | Lin Y Q, Jin W H, Cai L X, et al. Green preparation of covalently co-immobilized multienzymes on silica nanoparticles for clean production of reducing sugar from lignocellulosic biomass[J]. Journal of Cleaner Production, 2021, 314: 127994. |
| [57] | Lin Y Q, Jin W H, Wang J D, et al. A novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction[J]. Enzyme and Microbial Technology, 2018, 115: 29-36. |
| [58] | Zhou Y H, Zeng B, Zhou R, et al. One-pot synthesis of multiple stimuli-responsive magnetic nanomaterials based on the biomineralization of elastin-like polypeptides[J]. ACS Omega, 2021, 6(42): 27946-27954. |
| [59] | Cai L X, Zheng J L, Liu L X, et al. Elastin-like polypeptide: a novel titanification biomacromolecule for green and ultrafast synthesis of biotitania nanoparticles via biomimetic mineralization[J]. International Journal of Biological Macromolecules, 2025, 306(Pt 2): 141449. |
| [60] | Wang X D, Chen Z J, Li K, et al. The study of titanium dioxide modification by glutaraldehyde and its application of immobilized penicillin acylase[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560: 298-305. |
| [61] | Klapiszewski Ł, Zdarta J, Jesionowski T. Titania/lignin hybrid materials as a novel support for α-amylase immobilization: a comprehensive study[J]. Colloids and Surfaces B: Biointerfaces, 2018, 162: 90-97. |
| [62] | Datta L P, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials[J]. Biomaterials, 2020, 230: 119633. |
| [63] | Singh N, Qutub S, Khashab N M. Biocompatibility and biodegradability of metal organic frameworks for biomedical applications[J]. Journal of Materials Chemistry B, 2021, 9(30): 5925-5934. |
| [64] | Xiang Y X, Wang J P, Wang Y F, et al. Preparation and properties of colored silk fibers for wigs based on biomass polyphenols[J]. Dyes and Pigments, 2025, 240: 112788. |
| [65] | 方策, 宋立健, 丁玉梅, 等. 多酚改性纤维增强聚合物基复合材料研究进展[J]. 复合材料学报, 2023, 40(10): 5529-5541. |
| Fang C, Song L J, Ding Y M, et al. Research progress on polyphenols modified fiber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5529-5541. | |
| [66] | Yan W T, Shi M Q, Dong C X, et al. Applications of tannic acid in membrane technologies: a review[J]. Advances in Colloid and Interface Science, 2020, 284: 102267. |
| [67] | Shao L, Ma J R, Prelesnik J L, et al. Hierarchical materials from high information content macromolecular building blocks: construction, dynamic interventions, and prediction[J]. Chemical Reviews, 2022, 122(24): 17397-17478. |
| [68] | Ejima H, Richardson J J, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341(6142): 154-157. |
| [69] | Bakshi S, Li K Z, Dong P, et al. Bio-inspired polydopamine layer as a versatile functionalisation protocol for silicon-based photonic biosensors[J]. Talanta, 2024, 268: 125300. |
| [70] | Augustine N, Putzke S, Janke A, et al. Dopamine-supported metallization of Polyolefins─A contribution to transfer to an eco-friendly and efficient technological process[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5921-5931.[LinkOut] |
| [71] | Wang Z X, Ji S Q, Zhang J, et al. Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation[J]. Journal of Materials Chemistry A, 2018, 6(28): 13959-13967. |
| [72] | Bahmanzadeh S, Ruzgas T, Sotres J. Proteolytic degradation of gelatin-tannic acid multilayers[J]. Journal of Colloid and Interface Science, 2018, 526: 244-252. |
| [73] | Xv J, Zhang Z Y, Pang S Z, et al. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFs[J]. Biochemical Engineering Journal, 2022, 189: 108719. |
| [74] | Allais M, Meyer F, Ball V. Multilayered films made from tannic acid and alkaline phosphatasewith enzymatic activity and electrochemical behavior[J]. Journal of Colloid and Interface Science, 2018, 512: 722-729. |
| [75] | Jeong Y, Jeong S, Nam Y K, et al. Development of freeze-resistant aluminum surfaces by tannic acid coating and subsequent immobilization of antifreeze proteins[J]. Bulletin of the Korean Chemical Society, 2018, 39(4): 559-562. |
| [76] | Dong Z Y, Ke X, Tang S X, et al. A stable cell membrane-based coating with antibiofouling and macrophage immunoregulatory properties for implants at the macroscopic level[J]. Chemistry of Materials, 2021, 33(20): 7994-8006. |
| [77] | Zhang R F, Liu D K, Mao L, et al. Green and efficient fabrication of polydopamine/mega-carbonic anhydrase coatings for direct air CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2025, 13(42): 18037-18048. |
| [78] | Keeble A H, Turkki P, Stokes S, et al. Approaching infinite affinity through engineering of peptide–protein interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26523-26533. |
| [79] | Keeble A H, Yadav V K, Ferla M P, et al. DogCatcher allows loop-friendly protein-protein ligation[J]. Cell Chemical Biology, 2022, 29(2): 339-350.e10. |
| [80] | Gräwe A, Spruit C M, de Vries R P, et al. Bioluminescent detection of viral surface proteins using branched multivalent protein switches[J]. RSC Chemical Biology, 2024, 5(2): 148-157. |
| [81] | 易仑. 一种正交、双组份蛋白质偶联体系的构建[D]. 大连: 大连理工大学, 2023. |
| Yi L. Construction of an orthogonal, two-component protein coupling system[D]. Dalian: Dalian University of Technology, 2023. | |
| [82] | Hentrich C, Putyrski M, Hanuschka H, et al. Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies[J]. Nature Communications, 2024, 15: 5939. |
| [1] | 尤红运, 林景骏, 黄凯越, 舒日洋, 田志鹏, 王超, 陈颖. 溶剂效应对木质素酚类化合物加氢反应的影响机理[J]. 化工学报, 2022, 73(10): 4498-4506. |
| [2] | 刘潜, 张香兰, 李巍. 基于COSMO-RS模型的分离油酚混合物的离子液体萃取剂筛选[J]. 化工学报, 2018, 69(12): 5100-5111. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号