化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4498-4506.DOI: 10.11949/0438-1157.20220826
尤红运(), 林景骏, 黄凯越, 舒日洋(), 田志鹏, 王超, 陈颖
收稿日期:
2022-06-13
修回日期:
2022-08-31
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
舒日洋
作者简介:
尤红运(1996—),男,硕士研究生,2112002273@mail2.gdut.edu.cn
基金资助:
Hongyun YOU(), Jingjun LIN, Kaiyue HUANG, Riyang SHU(), Zhipeng TIAN, Chao WANG, Ying CHEN
Received:
2022-06-13
Revised:
2022-08-31
Online:
2022-10-05
Published:
2022-11-02
Contact:
Riyang SHU
摘要:
系统研究了木质素酚类化合物在Ru/C和Al2O3催化体系下溶剂效应对加氢反应的影响。在乙醇溶剂中,苯酚在35℃下即可完全转化为环己醇,具有最佳的加氢效果。研究表明极性溶剂比非极性溶剂的加氢效果更好,是因为催化剂分散均匀,强化了催化剂和反应物间的传质与扩散。在醇类极性溶剂中,乙醇的加氢反应效率最高,对比研究显示溶剂的极性越强,苯酚加氢的转化效果越好。还建立了Kamlet-Taft表达式参数与苯酚转化率间的关系关联式,分析了各参数的影响效果,详细阐述了Ru/C和Al2O3催化体系下详细的苯酚加氢反应路径和机理,并将该催化体系应用于其他木质素酚类化合物的加氢反应,也取得了很好的反应效果,大部分木质素酚类化合物均加氢饱和转化成稳定的环状醇类化合物。
中图分类号:
尤红运, 林景骏, 黄凯越, 舒日洋, 田志鹏, 王超, 陈颖. 溶剂效应对木质素酚类化合物加氢反应的影响机理[J]. 化工学报, 2022, 73(10): 4498-4506.
Hongyun YOU, Jingjun LIN, Kaiyue HUANG, Riyang SHU, Zhipeng TIAN, Chao WANG, Ying CHEN. Mechanism of solvent effect on hydrogenation of lignin-derived phenolic compounds[J]. CIESC Journal, 2022, 73(10): 4498-4506.
序号 | 催化剂 | 转化率/% | 选择性/% | |
---|---|---|---|---|
环己醇 | 环己酮 | |||
1 | Ru/C | 14.6 | 95.9 | 4.1 |
2 | Ru/C + WO3 | 6.2 | 93.6 | 6.4 |
3 | Ru/C + Nb2O5 | 9.2 | 94.1 | 5.9 |
4 | Ru/C + ZrO2 | 13.7 | 96.1 | 3.9 |
5 | Ru/C + TiO2 | 23.2 | 97.5 | 2.5 |
6 | Ru/C + HPW | 2.1 | 84.7 | 15.3 |
7 | Ru/C + HSiW | 2.2 | 86.5 | 13.5 |
8 | Ru/C + Al2O3 | 100 | 100 | 0 |
9 | Ru/C + Al2O3① | 69.8 | 99.1 | 0.9 |
10 | Ru/C + Al2O3② | 30.4 | 98.0 | 2.0 |
11 | Al2O3 | 0 | — | — |
表1 不同催化剂对苯酚加氢反应的影响
Table 1 The effect of different catalysts on the phenol hydrogenation
序号 | 催化剂 | 转化率/% | 选择性/% | |
---|---|---|---|---|
环己醇 | 环己酮 | |||
1 | Ru/C | 14.6 | 95.9 | 4.1 |
2 | Ru/C + WO3 | 6.2 | 93.6 | 6.4 |
3 | Ru/C + Nb2O5 | 9.2 | 94.1 | 5.9 |
4 | Ru/C + ZrO2 | 13.7 | 96.1 | 3.9 |
5 | Ru/C + TiO2 | 23.2 | 97.5 | 2.5 |
6 | Ru/C + HPW | 2.1 | 84.7 | 15.3 |
7 | Ru/C + HSiW | 2.2 | 86.5 | 13.5 |
8 | Ru/C + Al2O3 | 100 | 100 | 0 |
9 | Ru/C + Al2O3① | 69.8 | 99.1 | 0.9 |
10 | Ru/C + Al2O3② | 30.4 | 98.0 | 2.0 |
11 | Al2O3 | 0 | — | — |
图1 (a)Al2O3的Py-IR光谱(解吸温度150℃);(b)Ru/C催化剂的XRD谱图;(c)Ru/C催化剂的TEM图
Fig.1 (a)Py-IR spectra of Al2O3 (desorption temperature 150℃);(b)XRD pattern of the Ru/C catalyst;(c)TEM images of the Ru/C catalyst
序号 | 溶剂 | 转化率/% | 选择性/% | |
---|---|---|---|---|
环己醇 | 环己酮 | |||
1 | 正己烷 | 17.6 | 81.2 | 18.8 |
2 | 正辛烷 | 25.7 | 84.7 | 15.3 |
3 | 正十二烷 | 20.2 | 86.3 | 13.7 |
4 | 甲醇 | 24.6 | 97.9 | 2.1 |
5 | 乙醇 | 100 | 100 | 0 |
6 | 正丙醇 | 57.1 | 100 | 0 |
7 | 正丁醇 | 52.6 | 95.4 | 4.6 |
8 | 正己醇 | 31.0 | 97.2 | 2.8 |
9 | 正辛醇 | 14.4 | 91.3 | 8.7 |
表2 不同溶剂对苯酚加氢的影响
Table 2 The phenol hydrogenation results of different solvents
序号 | 溶剂 | 转化率/% | 选择性/% | |
---|---|---|---|---|
环己醇 | 环己酮 | |||
1 | 正己烷 | 17.6 | 81.2 | 18.8 |
2 | 正辛烷 | 25.7 | 84.7 | 15.3 |
3 | 正十二烷 | 20.2 | 86.3 | 13.7 |
4 | 甲醇 | 24.6 | 97.9 | 2.1 |
5 | 乙醇 | 100 | 100 | 0 |
6 | 正丙醇 | 57.1 | 100 | 0 |
7 | 正丁醇 | 52.6 | 95.4 | 4.6 |
8 | 正己醇 | 31.0 | 97.2 | 2.8 |
9 | 正辛醇 | 14.4 | 91.3 | 8.7 |
溶剂 | π* | α | β | 转化率/% | ||
---|---|---|---|---|---|---|
甲醇 | 55.4 | 0.7647 | 0.60 | 0.98 | 0.66 | 24.6 |
乙醇 | 51.9 | 0.6563 | 0.54 | 0.86 | 0.75 | 100 |
正丙醇 | 50.7 | 0.6192 | 0.52 | 0.84 | 0.90 | 57.1 |
正丁醇 | 50.2 | 0.6037 | 0.47 | 0.84 | 0.84 | 52.6 |
正己醇 | 48.8 | 0.5604 | 0.40 | 0.80 | 0.84 | 31.0 |
正辛醇 | 48.3 | 0.5449 | 0.40 | 0.77 | 0.81 | 14.4 |
表3 几种有机溶剂性质参数及苯酚加氢反应转化率
Table 3 The property parameters of some organic solvents and conversion of phenol hydrogenation
溶剂 | π* | α | β | 转化率/% | ||
---|---|---|---|---|---|---|
甲醇 | 55.4 | 0.7647 | 0.60 | 0.98 | 0.66 | 24.6 |
乙醇 | 51.9 | 0.6563 | 0.54 | 0.86 | 0.75 | 100 |
正丙醇 | 50.7 | 0.6192 | 0.52 | 0.84 | 0.90 | 57.1 |
正丁醇 | 50.2 | 0.6037 | 0.47 | 0.84 | 0.84 | 52.6 |
正己醇 | 48.8 | 0.5604 | 0.40 | 0.80 | 0.84 | 31.0 |
正辛醇 | 48.3 | 0.5449 | 0.40 | 0.77 | 0.81 | 14.4 |
图3 (a)不同溶剂中苯酚转化率随时间的变化情况;(b)乙醇溶剂中苯酚加氢反应的产物分布情况;(c)正丙醇溶剂中苯酚加氢反应的产物分布情况;(d)正辛烷溶剂中苯酚加氢反应的产物分布情况
Fig.3 (a)Variation of phenol conversion with time in different solvents;(b)Product distribution of phenol hydrogenation in ethanol solvent;(c)Product distribution of phenol hydrogenation in n-propanol solvent;(d)Product distribution of phenol hydrogenation in octane solvent
底物 | 转化率/% | 选择性/% | ||
---|---|---|---|---|
100 | 7.7 | 92.3 | ||
100 | 7.8 | 92.2 | ||
100 | 2.7 | 94.9 | 2.4 | |
100 | 9.8 | 90.2 | ||
100 | 10.3 | 89.7 | ||
65.5 | 100 | |||
39.4 | 100 |
表4 其他酚类模型化合物的催化加氢反应
Table 4 Catalytic hydrogenation of other phenolic model compounds
底物 | 转化率/% | 选择性/% | ||
---|---|---|---|---|
100 | 7.7 | 92.3 | ||
100 | 7.8 | 92.2 | ||
100 | 2.7 | 94.9 | 2.4 | |
100 | 9.8 | 90.2 | ||
100 | 10.3 | 89.7 | ||
65.5 | 100 | |||
39.4 | 100 |
1 | Huber G W, Chheda J N, Barrett C J, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. |
2 | Yang Z, Luo B W, Shu R Y, et al. Efficient hydrodeoxygenation of phenolic compounds and raw lignin-oil under a temperature-controlled phase-transfer catalysis[J]. Fuel, 2021, 291: 120091. |
3 | Dou X M, Jiang X, Li W Z, et al. Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst[J]. Applied Catalysis B: Environmental, 2020, 268: 118429. |
4 | 王江丽, 薛敏, 赵承科, 等. 木质素分级对其应用性能的影响[J]. 化工学报, 2022, 73(5): 1894-1907. |
Wang J L, Xue M, Zhao C K, et al. Influences of lignin fractionation on its utilization[J]. CIESC Journal, 2022, 73(5): 1894-1907. | |
5 | 王东玲, 王文锦, 彭梓芳, 等. 醇溶剂提取松木木质素及其结构表征[J]. 化工学报, 2020, 71(8): 3761-3769. |
Wang D L, Wang W J, Peng Z F, et al. Structure characterization of pine lignin extracted by different alcohol solvents[J]. CIESC Journal, 2020, 71(8): 3761-3769. | |
6 | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
7 | Long J X, Xu Y, Wang T J, et al. Efficient base-catalyzed decomposition and in situ hydrogenolysis process for lignin depolymerization and char elimination[J]. Applied Energy, 2015, 141: 70-79. |
8 | Zhang X, Wang K G, Chen J H, et al. Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt-Ni bimetal-based catalysts[J]. Applied Energy, 2020, 275: 115154. |
9 | 李雁斌, 徐莹, 马隆龙, 等. 邻甲酚液相原位加氢反应[J]. 高等学校化学学报, 2014, 35(12): 2654-2661. |
Li Y B, Xu Y, Ma L L, et al. Research on in situ hydrogenation of o-cresol over Ni/CMK-3 catalysts[J]. Chemical Journal of Chinese Universities, 2014, 35(12): 2654-2661. | |
10 | Wen J L, Sun S L, Yuan T Q, et al. Understanding the chemical and structural transformations of lignin macromolecule during torrefaction[J]. Applied Energy, 2014, 121: 1-9. |
11 | Shu R Y, Zhong Z J, You H Y, et al. Hydrodeoxygenation of lignin-derived phenolic compounds over Ru/TiO2-CeO2 catalyst prepared by photochemical reduction method[J]. Journal of the Energy Institute, 2021, 99: 1-8. |
12 | Niu Z, Zhang S, Sun Y, et al. Controllable synthesis of N i / S i O ₂ hollow spheres and their excellent catalytic performance in 4-nitrophenol reduction[J]. Dalton Transactions, 2014, 43(44): 16911-16918. |
13 | Shu R Y, Zhang Q, Xu Y, et al. Hydrogenation of lignin-derived phenolic compounds over step by step precipitated Ni/SiO2 [J]. RSC Advances, 2016, 6(7): 5214-5222. |
14 | Mao C, Zheng J W, Matsagar B M, et al. Highly-efficient Ru/Al-SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of p-phthalic acid[J]. Catalysis Science & Technology, 2020, 10(8): 2443-2451. |
15 | Rao D M, Xue X G, Cui G Q, et al. Metal-acid site synergistic catalysis in Ru–ZrO2 toward selective hydrogenation of benzene to cyclohexene[J]. Catalysis Science & Technology, 2018, 8(1): 236-243. |
16 | You H Y, Yang Z, Lin J J, et al. Hydrogenation of lignin-derived phenolic compounds over Ru/C enhanced by Al2O3 catalyst at room temperature[J]. ChemistrySelect, 2022, 7(19): e202200709. |
17 | Li A Q, Shen K, Chen J Y, et al. Highly selective hydrogenation of phenol to cyclohexanol over MOF-derived non-noble Co-Ni@NC catalysts[J]. Chemical Engineering Science, 2017, 166: 66-76. |
18 | Li F, Cao B, Zhu W X, et al. Hydrogenation of phenol over Pt/CNTs: the effects of Pt loading and reaction solvents[J]. Catalysts, 2017, 7(5): 145. |
19 | Takagi H, Isoda T, Kusakabe K, et al. Effects of solvents on the hydrogenation of mono-aromatic compounds using noble-metal catalysts[J]. Energy & Fuels, 1999, 13(6): 1191-1196. |
20 | Shi Y K, Qu G F, Ning P, et al. Advances of application of ionic liquids in catalytic oxidation reactions[J]. Advanced Materials Research, 2011, 233/234/235: 499-506. |
21 | Neri G, Visco A M, Donato A, et al. Hydrogenation of phenol to cyclohexanone over palladium and alkali-doped palladium catalysts[J]. Applied Catalysis A: General, 1994, 110(1): 49-59. |
22 | Chen Y Z, Liaw C W, Lee L I. Selective hydrogenation of phenol to cyclohexanone over palladium supported on calcined Mg/Al hydrotalcite[J]. Applied Catalysis A: General, 1999, 177(1): 1-8. |
23 | Kimura Y, Haraguchi K. Clay-alcohol-water dispersions: anomalous viscosity changes due to network formation of clay nanosheets induced by alcohol clustering[J]. Langmuir, 2017, 33(19): 4758-4768. |
24 | 章胜男, 韩东梅, 任山, 等. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118. |
Zhang S N, Han D M, Ren S, et al. Immobilization strategies of organic electrode materials[J]. Progress in Chemistry, 2020, 32(1): 103-118. | |
25 | Wang X Y, Rinaldi R. Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin[J]. ChemSusChem, 2012, 5(8): 1455-1466. |
26 | Mazzieri V A, L'Argentiére P C, Fígoli N S. Influence of methanol addition during selective hydrogenation of benzene to cyclohexene[J]. Reaction Kinetics and Catalysis Letters, 2004, 81(1): 107-112. |
27 | Kim G J, Kim M S, Byun J Y, et al. Effects of Ru addition to Pd/Al2O3 catalysts on methanol steam reforming reaction: a mechanistic study[J]. Applied Catalysis A: General, 2019, 572: 115-123. |
28 | Strobel A B, Egert T, Langguth P. Predicting leachables solubilization in polysorbate 80 solutions by a linear solvation energy relationship (LSER)[J]. Pharmaceutical Research, 2021, 38(9): 1549-1561. |
29 | Marcus Y. The properties of organic liquids that are relevant to their use as solvating solvents[J]. ChemInform, 1994, 25(12): 409-460. |
30 | Liu H Z, Jiang T, Han B X, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252. |
31 | Laurent E, Delmon B. Influence of oxygen-, nitrogen-, and sulfur-containing compounds on the hydrodeoxygenation of phenols over sulfided cobalt-molybdenum/.gamma.-alumina and nickel-molybdenum/.gamma.-alumina catalysts[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2516-2524. |
32 | Zhuang L, Li H X, Dai W L, et al. Liquid phase hydrogenation of phenol to cyclohexenone over a Pd-La-B amorphous catalyst[J]. Chemistry Letters, 2003, 32(11): 1072-1073. |
33 | Velu S, Kapoor M P, Inagaki S, et al. Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2 [J]. Applied Catalysis A: General, 2003, 245(2): 317-331. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 120
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||