• •
收稿日期:2025-10-27
修回日期:2025-12-08
出版日期:2025-12-26
通讯作者:
李大字
作者简介:陈郇(1995—),男,博士研究生,chenxun@mail.buct.edu.cn
基金资助:Received:2025-10-27
Revised:2025-12-08
Online:2025-12-26
Contact:
Dazi LI
摘要:
本文针对化工过程中四级连续搅拌反应釜(CSTR)系统,提出了一种融合扩张状态观测器(ESO)与执行依赖启发式动态规划(ADHDP)的智能控制策略,旨在解决该系统面临强耦合和未知动态等情况下的温度控制问题。所提策略首先使用ESO实时估计和补偿子系统的“总扰动”,同时完成对子系统之间的解耦,随后针对被补偿的系统设计一种ADHDP算法,以获得最优虚拟控制律。本文所提方法做到了分布式抗扰和集中式控制,这不仅处理了系统强耦合问题,同时ESO的存在也减轻了ADHDP算法的抗扰压力。为验证所提方法的优越性,本文设计了三种对比算法,包括PID控制算法、自抗扰控制(ADRC)算法和ADHDP算法,结果表明本文所提算法在响应时间和稳态误差等方面均优于其他三种算法。
中图分类号:
陈郇, 李大字. 基于ESO的动作依赖启发式动态规划控制及其在四级连续搅拌釜系统应用[J]. 化工学报, DOI: 10.11949/0438-1157.20251185.
Xun CHEN, Dazi LI. ESO-based action dependent heuristic dynamic programming control and its' application on a four-stage CSTR process[J]. CIESC Journal, DOI: 10.11949/0438-1157.20251185.
| 参数 | 单位 | 数值 | 参数 | 单位 | 数值 | |
|---|---|---|---|---|---|---|
| kmol/m3 | 4.0 | K | 300 | |||
| kmol/m3 | 2.0 | K | 300 | |||
| kmol/m3 | 3.0 | K | 300 | |||
| kmol/m3 | 3.5 | K | 300 | |||
| m3 | 1 | kJ/mol | -5.0×104 | |||
| m3 | 3 | kJ/mol | -5.2×104 | |||
| m3 | 4 | kJ/mol | -5.0×104 | |||
| m3 | 6 | h-1 | 3.0×106 | |||
| m3/h | 35 | h-1 | 3.0×105 | |||
| m3/h | 45 | h-1 | 3.0×105 | |||
| m3/h | 33 | kJ/(kg∙K) | 0.231 | |||
| kJ/kmol | 5.0×104 | kg/m3 | 1000 | |||
| kJ/kmol | 7.5×104 | m3/h | 5 | |||
| kJ/kmol | 7.53×104 | m3/h | 10 | |||
| m3/h | 20 | m3/h | 8 | |||
| m3/h | 10 | m3/h | 12 | |||
| kJ/(mol∙K) | 8.314 | |||||
表1 四级CSTR系统参数
Table 1 Parameters of the four-stage CSTR process
| 参数 | 单位 | 数值 | 参数 | 单位 | 数值 | |
|---|---|---|---|---|---|---|
| kmol/m3 | 4.0 | K | 300 | |||
| kmol/m3 | 2.0 | K | 300 | |||
| kmol/m3 | 3.0 | K | 300 | |||
| kmol/m3 | 3.5 | K | 300 | |||
| m3 | 1 | kJ/mol | -5.0×104 | |||
| m3 | 3 | kJ/mol | -5.2×104 | |||
| m3 | 4 | kJ/mol | -5.0×104 | |||
| m3 | 6 | h-1 | 3.0×106 | |||
| m3/h | 35 | h-1 | 3.0×105 | |||
| m3/h | 45 | h-1 | 3.0×105 | |||
| m3/h | 33 | kJ/(kg∙K) | 0.231 | |||
| kJ/kmol | 5.0×104 | kg/m3 | 1000 | |||
| kJ/kmol | 7.5×104 | m3/h | 5 | |||
| kJ/kmol | 7.53×104 | m3/h | 10 | |||
| m3/h | 20 | m3/h | 8 | |||
| m3/h | 10 | m3/h | 12 | |||
| kJ/(mol∙K) | 8.314 | |||||
| 四级CSTR系统ESO-ADHDP算法流程 |
|---|
| 随机初始化评价网络权重矩阵 |
| 初始化系统状态 |
| 初始化四个子系统的ESO状态 |
| for |
| 计算四个子系统CSTRi的温度 |
通过执行网络计算 |
| 计算 |
使用 |
| 通过 |
| 提取温度状态向量 |
通过执行网络计算 |
计算相邻两个时刻的 |
计算TD误差: |
根据 |
根据 |
| end for |
表2 四级CSTR系统ESO-ADHDP算法流程
Table 2 Four-stage CSTR ESO-ADHDP Algorithm Process
| 四级CSTR系统ESO-ADHDP算法流程 |
|---|
| 随机初始化评价网络权重矩阵 |
| 初始化系统状态 |
| 初始化四个子系统的ESO状态 |
| for |
| 计算四个子系统CSTRi的温度 |
通过执行网络计算 |
| 计算 |
使用 |
| 通过 |
| 提取温度状态向量 |
通过执行网络计算 |
计算相邻两个时刻的 |
计算TD误差: |
根据 |
根据 |
| end for |
| 控制策略 | 参数 | 值 | 控制策略 | 参数 | 值 | |
|---|---|---|---|---|---|---|
| PID | 1500 | ADRC | 1000 | |||
| 2000 | 1000 | |||||
| 2400 | 1000 | |||||
| 2800 | 1000 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| ESO-ADHDP | 0.01 | ADHDP | 0.01 | |||
| 0.01 | 0.01 | |||||
| 0.9 | 0.9 | |||||
| 100 | ||||||
| 100 | ||||||
| 100 | ||||||
| 100 | ||||||
表3 不同控制策略参数
Table 3 Parameters of the four controllers
| 控制策略 | 参数 | 值 | 控制策略 | 参数 | 值 | |
|---|---|---|---|---|---|---|
| PID | 1500 | ADRC | 1000 | |||
| 2000 | 1000 | |||||
| 2400 | 1000 | |||||
| 2800 | 1000 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| 10 | 100 | |||||
| ESO-ADHDP | 0.01 | ADHDP | 0.01 | |||
| 0.01 | 0.01 | |||||
| 0.9 | 0.9 | |||||
| 100 | ||||||
| 100 | ||||||
| 100 | ||||||
| 100 | ||||||
| [1] | Hu C T, Finkelstein J E, Wu W, et al. Development of an automated multi-stage continuous reactive crystallization system with in-line PATs for high viscosity process[J]. Reaction Chemistry & Engineering, 2018, 3(5): 658-667. |
| [2] | 钟子豪, 刘塞尔, 商敏静, 等. 基于磁力搅拌的微型CSTR流动特征及微观混合性能[J]. 化工学报, 2024, 75(11): 4217-4225. |
| Zhong Z H, Liu S E, Shang M J, et al. Flow characteristics and micromixing performance of micro-CSTR with magnetic stirring[J]. CIESC Journal, 2024, 75(11): 4217-4225. | |
| [3] | Navid Y, Mehdi S, Masoud A, et al. Design of Nonlinear CSTR Control System using Active Disturbance Rejection Control Optimized by Asexual Reproduction Optimization[J]. Journal of Automation and Control, 2015, 3(2): 36-42. |
| [4] | 王立敏, 杨继胜, 于晶贤, 等. 基于T-S模糊模型的间歇过程的迭代学习容错控制[J]. 化工学报, 2017, 68(3): 1081-1089. |
| Wang L M, Yang J S, Yu J X, et al. Iterative learning fault-tolerant control for batch processes based on T-S fuzzy model[J]. CIESC Journal, 2017, 68(3): 1081-1089. | |
| [5] | 刘凯, 辛丽平, 刘家硕, 等. 连续搅拌反应釜的固定时间命令滤波跟踪控制[J]. 控制与决策, 2024, 39(6): 1936-1942. |
| Liu K, Xin L P, Liu J S, et al. Fixed-time command filter tracking control of continuous stirred tank reactor[J]. Control and Decision, 2024, 39(6): 1936-1942. | |
| [6] | Li D Z, Li Z, Gao Z Q, et al. Active disturbance rejection-based high-precision temperature control of a semibatch emulsion polymerization reactor[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3210-3221. |
| [7] | Lee J Y, Jin G G, So G B, et al. Adaptive nonlinear proportional–integral–derivative control of a continuous stirred tank reactor process using a radial basis function neural network[J]. Algorithms, 2025, 18(7): 442. |
| [8] | Siddiqui M A, Anwar M N, Laskar S H. Control of nonlinear jacketed continuous stirred tank reactor using different control structures[J]. Journal of Process Control, 2021, 108: 112-124. |
| [9] | Cherkasov N, Adams S J, Bainbridge E G A, et al. Continuous stirred tank reactors in fine chemical synthesis for efficient mixing, solids-handling, and rapid scale-up[J]. Reaction Chemistry & Engineering, 2023, 8(2): 266-277. |
| [10] | 周红标, 张钰, 柏小颖, 等. 基于自适应模糊神经网络的非线性系统模型预测控制[J]. 化工学报, 2020, 71(7): 3201-3212. |
| Zhou H B, Zhang Y, Bai X Y, et al. Model predictive control of nonlinear system based on adaptive fuzzy neural network[J]. CIESC Journal, 2020, 71(7): 3201-3212. | |
| [11] | 孔晓涵, 辛丽平, 柴欣生. 串级连续搅拌反应釜的有限时间命令滤波控制[J]. 控制与决策, 2022, 37(9): 2245-2254. |
| Kong X H, Xin L P, Chai X S. Finite-time command filter control of cascade continuous stirred tank reactors[J]. Control and Decision, 2022, 37(9): 2245-2254. | |
| [12] | Chen S, Wu Z, Rincon D, et al. Machine learning-based distributed model predictive control of nonlinear processes[J]. AIChE Journal, 2020, 66(11): e17013. |
| [13] | Liu Y F, Ma M, Liu Y F, et al. Finite-time fuzzy tracking control for two-stage continuous stirred tank reactor: a gradient descent approach via armijo line search[J]. Electronics, 2025, 14(20): 4069. |
| [14] | Zhang F, Wang L. Disturbance rejection design for Gaussian process-based model predictive control using extended state observer[J]. Computers & Chemical Engineering,2024,186: 108708. |
| [15] | Xiao M, Zeng M, Li Y, et al. Drive control of proportional valves based on active disturbance rejection control[J]. Engineering Research Express, 2025, 7(2): 025012. |
| [16] | Ye Y H, Cheng Y, Zhou F, et al. Optimization of active disturbance rejection controller for distillation process based on quantitative feedback theory[J]. Processes, 2025, 13(5): 1436. |
| [17] | Song X D, Zhao Y D, Li Z H, et al. A dual-loop modified active disturbance rejection control scheme for a high-purity distillation column[J]. Processes, 2025, 13(5): 1359. |
| [18] | Peng L H, Xiong X Y, Wang L J. Research on yarn tension control technology for knitting underwear machine based on adaptive ADRC[J]. Scientific Reports, 2025, 15: 9750. |
| [19] | 程赟, 陈增强, 孙明玮, 等. 多变量逆解耦自抗扰控制及其在精馏塔过程中的应用[J]. 自动化学报, 2017, 43(6): 1080-1088. |
| Cheng Y, Chen Z Q, Sun M W, et al. Multivariable inverted decoupling active disturbance rejection control and its application to a distillation column process[J]. Acta Automatica Sinica, 2017, 43(6): 1080-1088. | |
| [20] | Liu R J, Nie Z Y, Shao H, et al. Active disturbance rejection control for non-minimum phase systems under plant reconstruction[J]. ISA Transactions, 2023, 134: 497-510. |
| [21] | 郭晓临, 刘洋, 林娜, 等. 基于扩展状态观测器的量化无模型自适应迭代学习控制[J]. 控制理论与应用, 2025, 42(2): 253-262. |
| Guo X L, Liu Y, Lin N, et al. Extended state observer-based quantitative model-free adaptive iterative learning control[J]. Control Theory & Applications, 2025, 42(2): 253-262. | |
| [22] | Li D Z, Wang Z, Yu W L, et al. Application of LADRC with stability region for a hydrotreating back-flushing process[J]. Control Engineering Practice, 2018, 79: 185-194. |
| [23] | Li D Z, Meng N J, Song T H. Learning control of fermentation process with an improved DHP algorithm[J]. Chinese Journal of Chemical Engineering, 2016, 24(10): 1399-1405. |
| [24] | Li A, Shen Y H, Du B, et al. Backstepping-based finite-horizon optimization for pitching attitude control of aircraft[J]. Aerospace, 2025, 12(8): 653. |
| [25] | 谭旭峰, 李媛, 刘洋. 基于自适应动态规划的随机时滞线性二次型最优跟踪控制[J]. 系统科学与数学, 2024, 44(1): 17-30. |
| Tan X F, Li Y, Liu Y. Stochastic linear quadratic optimal tracking control with time-delays based on adaptive dynamic programming[J]. Journal of Systems Science and Mathematical Sciences, 2024, 44(1): 17-30. | |
| [26] | Wang D, Ren J, Huang H M, et al. Particle swarm optimization for adaptive-critic feedback control with power system applications[J]. Chinese Journal of Electronics, 2025, 34(4): 1265-1274. |
| [27] | Li L T, Li D Z, Song T H, et al. Actor–critic learning control with regularization and feature selection in policy gradient estimation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(3): 1217-1227. |
| [28] | Luo S J, Xue K Z W, . An ADP-based robust control scheme for nonaffine nonlinear systems with uncertainties and input constraints[J]. Chinese Physics B, 2025, 34(6): 251-260. |
| [29] | Vu M T, Kim S H, Pham D H, et al. Adaptive dynamic programming-based intelligent finite-time flexible SMC for stabilizing fractional-order four-wing chaotic systems[J]. Mathematics, 2025, 13(13): 2078. |
| [30] | 张化光, 张欣, 罗艳红, 等. 自适应动态规划综述[J]. 自动化学报, 2013, 39(4): 303-311. |
| Zhang H G, Zhang X, Luo Y H, et al. An overview of research on adaptive dynamic programming[J]. Acta Automatica Sinica, 2013, 39(4): 303-311. | |
| [31] | 王鼎, 赵明明, 刘德荣, 等. 数据驱动自适应评判控制研究进展[J]. 自动化学报, 2025, 51(6): 1170-1190. |
| Wang D, Zhao M M, Liu D R, et al. Research advances on data-driven adaptive critic control[J]. Acta Automatica Sinica, 2025, 51(6): 1170-1190. | |
| [32] | Liu S Y, Yin X Y, Liu J B, et al. Distributed simultaneous state and parameter estimation of nonlinear systems[J]. Chemical Engineering Research and Design, 2022, 181: 74-86. |
| [33] | Sokolov Y, Kozma R, Werbos L D, et al. Complete stability analysis of a heuristic approximate dynamic programming control design[J]. Automatica, 2015, 59: 9-18. |
| [1] | 郭旭, 贾继宁, 姚克俭. 基于优化CNN-BiLSTM神经网络的间歇精馏过程建模[J]. 化工学报, 2025, 76(9): 4613-4629. |
| [2] | 王三一, 黄文来. 电化学合成氨流程建模与优化[J]. 化工学报, 2025, 76(9): 4474-4486. |
| [3] | 周轶磊, 李智, 彭鑫. 基于代理模型的连续重整反应过程自优化控制结构设计[J]. 化工学报, 2025, 76(9): 4499-4511. |
| [4] | 朱春梦, 李增, 柳楠, 赵云鹏, 石孝刚, 蓝兴英. 基于自编码器和多尺度符号转移熵的FCC沉降器跑剂故障检测[J]. 化工学报, 2025, 76(9): 4512-4523. |
| [5] | 王芳, 马素霞, 田营, 刘众元. 基于LSTM动态修正一维机理模型的CFB机组NO x 排放浓度预测方法[J]. 化工学报, 2025, 76(7): 3416-3425. |
| [6] | 王金江, 鲁振杰, 安维峥, 杨风允, 秦小刚. ORC发电系统工艺过程预警诊断技术研究与展望[J]. 化工学报, 2025, 76(7): 3137-3152. |
| [7] | 李文亮, 纪成, 梁晨, 吴思辰, 陈石林, 孙巍, 翟持. 基于TDMN的青霉素浓度在线软测量[J]. 化工学报, 2025, 76(6): 2848-2858. |
| [8] | 吴与伦, 王振雷, 王昕. 基于对比学习的乙烯裂解炉运行工况识别方法[J]. 化工学报, 2025, 76(6): 2733-2742. |
| [9] | 张涵川, 尚超, 吕文祥, 黄德先, 张亚宁. 基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法[J]. 化工学报, 2025, 76(6): 2781-2790. |
| [10] | 李欣怡, 王功明, 王自鹏, 乔俊飞. 基于事件触发的污水处理过程水质智能预测研究[J]. 化工学报, 2025, 76(6): 2828-2837. |
| [11] | 熊敏, 刘冬妹, 王智超, 周利, 吉旭. 变负荷条件下绿氨生产操作参数的调控与优化[J]. 化工学报, 2025, 76(6): 2791-2801. |
| [12] | 张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897. |
| [13] | 周洋, 梁聃, 汪恺, 张艺蓝, 贾立. 基于Alopex进化算法和集成学习的多模态神经网络的污水反渗透过程建模[J]. 化工学报, 2025, 76(4): 1661-1670. |
| [14] | 张晗筱, 王瑞琪, 张亚婷. 基于CNN-LSTM的换热器污垢因子预测研究[J]. 化工学报, 2025, 76(4): 1671-1679. |
| [15] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号
