化工学报

• •    

基于ESO的动作依赖启发式动态规划控制及其在四级连续搅拌釜系统应用

陈郇(), 李大字()   

  1. 北京化工大学信息科学与技术学院,北京 100029
  • 收稿日期:2025-10-27 修回日期:2025-12-08 出版日期:2025-12-26
  • 通讯作者: 李大字
  • 作者简介:陈郇(1995—),男,博士研究生,chenxun@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(62273026)

ESO-based action dependent heuristic dynamic programming control and its' application on a four-stage CSTR process

Xun CHEN(), Dazi LI()   

  1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2025-10-27 Revised:2025-12-08 Online:2025-12-26
  • Contact: Dazi LI

摘要:

本文针对化工过程中四级连续搅拌反应釜(CSTR)系统,提出了一种融合扩张状态观测器(ESO)与执行依赖启发式动态规划(ADHDP)的智能控制策略,旨在解决该系统面临强耦合和未知动态等情况下的温度控制问题。所提策略首先使用ESO实时估计和补偿子系统的“总扰动”,同时完成对子系统之间的解耦,随后针对被补偿的系统设计一种ADHDP算法,以获得最优虚拟控制律。本文所提方法做到了分布式抗扰和集中式控制,这不仅处理了系统强耦合问题,同时ESO的存在也减轻了ADHDP算法的抗扰压力。为验证所提方法的优越性,本文设计了三种对比算法,包括PID控制算法、自抗扰控制(ADRC)算法和ADHDP算法,结果表明本文所提算法在响应时间和稳态误差等方面均优于其他三种算法。

关键词: 自适应动态规划, ESO, 四级CSTR, 神经网络, 过程控制, 动态建模

Abstract:

An intelligent control strategy for a four-stage continuous stirred tank reactor (CSTR) system in chemical processes is proposed, which integrates an extended state observer (ESO) with action-dependent heuristic dynamic programming (ADHDP). The aim is to address the challenge of temperature control in the presence of strong coupling and unknown dynamics. First, the ESO is used to estimate and compensate the "total disturbance" of each subsystem in real time while achieving decoupling among the subsystems. Then, for the disturbance-compensated system, an ADHDP algorithm is designed to obtain the optimal virtual control law. The proposed method achieves decentralized disturbance rejection and centralized control, which not only addresses the system's strong coupling issues but also reduces the burden on the ADHDP algorithm thanks to the presence of the ESO. To verify the superiority of the proposed method, three comparative algorithms were designed in this study, including a PID control algorithm, an active disturbance rejection control (ADRC) algorithm, and an ADHDP algorithm. The results show that the algorithm proposed in this paper outperforms the other three algorithms in terms of response time, steady-state error, and other performance metrics.

Key words: ADP, ESO, four-stage CSTR process, neural networks, process control, dynamic modeling

中图分类号: