化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1885-1897.DOI: 10.11949/0438-1157.20241044
收稿日期:2024-09-19
修回日期:2024-11-11
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
张新梅
作者简介:张新梅(1980—),女,博士,副教授,zhangxm@upc.edu.cn
基金资助:
Xinmei ZHANG1(
), Ao ZHANG1, Dehua QIU1, Xiaoshuang LIU1, Chen CHEN2
Received:2024-09-19
Revised:2024-11-11
Online:2025-04-25
Published:2025-05-12
Contact:
Xinmei ZHANG
摘要:
化工园区内存有大量危化品并具有复杂的工艺装置,一旦发生火灾爆炸事故,极易影响邻近单元而引发多米诺效应,导致更为严重的后果。为了探究火灾多米诺效应的动态演变过程以及协同效应对多米诺事故升级的影响,对多米诺效应进行定量评估,基于储罐的热响应机理,综合考量热辐射影响下的罐体材料失效及罐内压力上升的双向作用,并融合多重火灾热辐射的时空演变和协同效应等因素,构建了储罐的失效时间与升级概率的瞬态响应模型。以某储罐区为研究对象进行仿真,设定初始事故并对场景内多米诺效应进行动态建模分析。结果表明,多重火灾之间的协同效应会提高储罐温度上升速率,从而显著缩短储罐的失效时间,加快多米诺效应升级;研究建立的动态多米诺效应模型能够预测储罐的失效时间和概率,进而确定多米诺效应的升级路径,同时依据结果分析得出针对性的断链策略阻断事故传播,为化工园区内的安全防护分配和应急措施制订提供理论依据。
中图分类号:
张新梅, 张傲, 邱德华, 刘晓爽, 陈晨. 基于热响应机理的罐区池火灾动态多米诺效应评估方法[J]. 化工学报, 2025, 76(4): 1885-1897.
Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm[J]. CIESC Journal, 2025, 76(4): 1885-1897.
| 储罐 | 储存物质 | 直径/m | 高度/m | 体积/m3 | 物质质量/t |
|---|---|---|---|---|---|
| T1 | 苯 | 10 | 6.5 | 500 | 350 |
| T2 | 苯 | 7 | 5.5 | 200 | 120 |
| T3 | 丙酮 | 10 | 6.5 | 500 | 300 |
| T4 | 丙酮 | 7 | 5.5 | 200 | 140 |
| T4 | 丙酮 | 7 | 5.5 | 200 | 15 |
表1 罐区内储罐参数
Table 1 Parameters of tanks in tank farms
| 储罐 | 储存物质 | 直径/m | 高度/m | 体积/m3 | 物质质量/t |
|---|---|---|---|---|---|
| T1 | 苯 | 10 | 6.5 | 500 | 350 |
| T2 | 苯 | 7 | 5.5 | 200 | 120 |
| T3 | 丙酮 | 10 | 6.5 | 500 | 300 |
| T4 | 丙酮 | 7 | 5.5 | 200 | 140 |
| T4 | 丙酮 | 7 | 5.5 | 200 | 15 |
| 储罐 | 热辐射强度/(kW/m2) | ||||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | T5 | |
| T1 | — | 20.3 | 20.3 | 12.3 | 6.7 |
| T2 | 20.3 | — | 12.3 | 20.3 | 5.4 |
| T3 | 15.6 | 9.0 | — | 15.6 | 15.6 |
| T4 | 9.0 | 15.6 | 15.6 | — | 9.0 |
| T5 | 4.7 | 3.8 | 15.6 | 9.0 | — |
表2 热辐射强度
Table 2 Thermal radiation intensity
| 储罐 | 热辐射强度/(kW/m2) | ||||
|---|---|---|---|---|---|
| T1 | T2 | T3 | T4 | T5 | |
| T1 | — | 20.3 | 20.3 | 12.3 | 6.7 |
| T2 | 20.3 | — | 12.3 | 20.3 | 5.4 |
| T3 | 15.6 | 9.0 | — | 15.6 | 15.6 |
| T4 | 9.0 | 15.6 | 15.6 | — | 9.0 |
| T5 | 4.7 | 3.8 | 15.6 | 9.0 | — |
| 储罐 | 失效时间/s |
|---|---|
| T3 | 295 |
| T2 | 604 |
| T4 | 671 |
| T5 | 727 |
表3 储罐实际失效时间
Table 3 Actual time to failure of tanks
| 储罐 | 失效时间/s |
|---|---|
| T3 | 295 |
| T2 | 604 |
| T4 | 671 |
| T5 | 727 |
| 时间 | 热辐射强度/(kW/m2) | |||
|---|---|---|---|---|
| T3 | T2 | T4 | T5 | |
| 0~294 s | 20.3 | 20.3 | 12.3 | 6.7 |
| 295~603 s | — | 35.9 | 27.9 | 22.3 |
| 604~670 s | — | — | 48.2 | 27.7 |
| 671~726 s | — | — | — | 36.7 |
表4 随时间更新的热辐射值
Table 4 Thermal radiation intensity updated over time
| 时间 | 热辐射强度/(kW/m2) | |||
|---|---|---|---|---|
| T3 | T2 | T4 | T5 | |
| 0~294 s | 20.3 | 20.3 | 12.3 | 6.7 |
| 295~603 s | — | 35.9 | 27.9 | 22.3 |
| 604~670 s | — | — | 48.2 | 27.7 |
| 671~726 s | — | — | — | 36.7 |
| 26 | Wang S L. Fundamentals of Chemical Equipment[M]. 3rd ed. Beijing: Chemical Industry Press, 2019. |
| 27 | Ding L, Khan F, Ji J. A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities[J]. Reliability Engineering & System Safety, 2022, 217: 108081. |
| 28 | 张跃. 火灾环境下液体储罐破裂失效过程研究[D]. 大连: 大连理工大学, 2020. |
| Zhang Y. Study on failure process of liquid storage tank in fire environment[D]. Dalian: Dalian University of Technology, 2020. | |
| 29 | 潘科, 刘媛, 许开立. 基于probit模型的超压引发多米诺效应定量风险评价研究[J]. 中国安全科学学报, 2012, 22(9): 51-56. |
| Pan K, Liu Y, Xu K L. Quantitative risk assessment of domino effects caused by blast wave based on probit models[J]. China Safety Science Journal, 2012, 22(9): 51-56. | |
| 30 | Ding L, Khan F, Ji J. A novel approach for domino effects modeling and risk analysis based on synergistic effect and accident evidence[J]. Reliability Engineering & System Safety, 2020, 203: 107109. |
| 1 | 张建文, 赵挺生, 万平玉, 等. 流程工业一体化安全管控探讨[J]. 化工学报, 2024, 75(6): 2375-2384. |
| Zhang J W, Zhao T S, Wan P Y, et al. Discussion on integrated security control in process industry[J]. CIESC Journal, 2024, 75(6): 2375-2384. | |
| 2 | Cozzani V, Gubinelli G, Antonioni G, et al. The assessment of risk caused by domino effect in quantitative area risk analysis[J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 14-30. |
| 3 | Zhou J F, Reniers G, Cozzani V. Improved probit models to assess equipment failure caused by domino effect accounting for dynamic and synergistic effects of multiple fires[J]. Process Safety and Environmental Protection, 2021, 154: 306-314. |
| 4 | Yang J H, Zhang M G, Zuo Y W, et al. Improved models of failure time for atmospheric tanks under the coupling effect of multiple pool fires[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104957. |
| 5 | Amin M T, Scarponi G E, Cozzani V, et al. Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response[J]. Reliability Engineering & System Safety, 2024, 242: 109751. |
| 6 | 赵金龙, 黄弘, 李聪, 等. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084-3090. |
| Zhao J L, Huang H, Li C, et al. Quantitative risk assessment in storage tank areas based on event-chains[J]. CIESC Journal, 2016, 67(7): 3084-3090. | |
| 7 | Ding L, Khan F, Abbassi R, et al. FSEM: an approach to model contribution of synergistic effect of fires for domino effects[J]. Reliability Engineering & System Safety, 2019, 189: 271-278. |
| 8 | Guo L P, Wang Z R. Analysis of uncertainty propagation path of fire-induced domino effect based on an approach of layered fuzzy Petri nets[J]. Chemical Engineering Science, 2023, 268: 118410. |
| 9 | Chen C, Reniers G, Zhang L B. An innovative methodology for quickly modeling the spatial-temporal evolution of domino accidents triggered by fire[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 312-324. |
| 10 | Landucci G, Gubinelli G, Antonioni G, et al. The assessment of the damage probability of storage tanks in domino events triggered by fire[J]. Accident Analysis & Prevention, 2009, 41(6): 1206-1215. |
| 11 | 柯特, 陈先锋, 陈月, 等. 基于动态贝叶斯网络的储罐区燃爆事故多米诺效应研究[J]. 爆破, 2022, 39(4): 186-191, 203. |
| Ke T, Chen X F, Chen Y, et al. Domino effect study of tank area ignition and explosion accident based on dynamic Bayesian network[J]. Blasting, 2022, 39(4): 186-191, 203. | |
| 12 | Huang K X, Chen G H, Khan F, et al. Dynamic analysis for fire-induced domino effects in chemical process industries[J]. Process Safety and Environmental Protection, 2021, 148: 686-697. |
| 13 | Zhang L B, Landucci G, Reniers G, et al. DAMS: a model to assess domino effects by using agent-based modeling and simulation[J]. Risk Analysis, 2018, 38(8): 1585-1600. |
| 14 | 于清华. 多米诺效应阈值研究进展[J]. 中国安全生产科学技术, 2011, 7(10): 212-215. |
| Yu Q H. Research progress on domino effect threshold[J]. Journal of Safety Science and Technology, 2011, 7(10): 212-215. | |
| 15 | 赵景斌, 王彦富, 王涛, 等. 安全防护对火灾多米诺效应时空演变的影响[J]. 南京工业大学学报(自然科学版). 2023, 45(1): 93-102. |
| Zhao J B, Wang Y F, Wang T, et al. Effects of safety protection on temporal and spatial evolution of fire domino effect[J]. Journal of Nanjing Tech University (Natural Science Edition), 2023, 45(1): 93-102. | |
| 16 | Khakzad N, Amyotte P, Cozzani V, et al. How to address model uncertainty in the escalation of domino effects?[J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 49-56. |
| 17 | Xu Y Y, Reniers G, Yang M, et al. Uncertainties and their treatment in the quantitative risk assessment of domino effects: classification and review[J]. Process Safety and Environmental Protection, 2023, 172: 971-985. |
| 18 | Chen G H, Wu Y, Men J K, et al. A novel approach for failure and consequence assessment considering multi-hazard coupling scenario in chemical industrial parks[J]. Engineering Failure Analysis, 2024, 156: 107867. |
| 19 | 贾梅生. 过程设备火灾易损性理论与多米诺效应防控[D]. 广州: 华南理工大学, 2017. |
| Jia M S. Fire vulnerability theory of process equipment and domino effect prevention and control[D]. Guangzhou: South China University of Technology, 2017. | |
| 20 | Zamejc E. API standard 521 guidance on mixing of hot/cold liquids and prevention of superheat limit explosions[J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104400. |
| 21 | Abdolhamidzadeh B, Abbasi T, Rashtchian D, et al. Domino effect in process-industry accidents—an inventory of past events and identification of some patterns[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 575-593. |
| 22 | 兆文忠, 李向伟, 董平沙. 焊接结构抗疲劳设计理论与方法[M]. 北京: 机械工业出版社, 2017. |
| Zhao W Z, Li X W, Dong P S. Theory and Method of Anti-Fatigue Design of Welded Structures[M]. Beijing: China Machine Press, 2017. | |
| 23 | Fairbairn D R. European recommendations for the fire safety of steel structures: calculation of the fire resistance of load bearing elements and structural assemblies exposed to the standard fire[J]. Fire Safety Journal, 1984, 7(2): 204. |
| 24 | 李玉, 李昌, 张宇, 等. 池火灾下油罐热力失效过程数值模拟及试验验证[J]. 油气储运, 2022, 41(5): 557-566. |
| Li Y, Li C, Zhang Y, et al. Numerical simulation and testing verification of thermal failure process on oil storage tank under pool fire[J]. Oil & Gas Storage and Transportation, 2022, 41(5): 557-566. | |
| 25 | Khan F I, Abbasi S A. DOMIFFECT (DOMIno eFFECT): user-friendly software for domino effect analysis[J]. Environmental Modelling & Software, 1998, 13(2): 163-177. |
| 26 | 王绍良. 化工设备基础[M]. 3版. 北京: 化学工业出版社, 2019. |
| [1] | 霍军良, 唐治国, 邱宗君, 冯玉华, 蒋旭, 王乐怡, 杨宇, 乔帆帆, 赫一凡, 喻健良. 节流作用下CO2管道放空过程的冻堵风险实验研究[J]. 化工学报, 2025, 76(4): 1898-1908. |
| [2] | 王法正, 隋璘, 熊伟丽. 面向多采样率数据的TTPA-LSTM软测量建模[J]. 化工学报, 2025, 76(4): 1635-1646. |
| [3] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
| [4] | 齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| [5] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
| [6] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
| [7] | 郭鑫, 李文静, 乔俊飞. 基于自组织模块化神经网络的污水处理过程出水参数预测[J]. 化工学报, 2024, 75(9): 3242-3254. |
| [8] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
| [9] | 苏彬, 董浩伟, 罗振敏, 邓军, 王涛, 程方明. 气粉两相体系爆炸动力学特性及机理研究进展[J]. 化工学报, 2024, 75(6): 2109-2122. |
| [10] | 张建文, 赵挺生, 万平玉, 王倩琳, 窦站, 徐波. 流程工业一体化安全管控探讨[J]. 化工学报, 2024, 75(6): 2375-2384. |
| [11] | 常蕊, 邢蕊蕊, 闫学海. 基于非共价化学的绿色生物可循环肽材料[J]. 化工学报, 2024, 75(4): 1317-1332. |
| [12] | 董益斌, 熊敬超, 王敬宇, 汪守康, 王亚飞, 黄群星. 融合激光雷达料位测算的锅炉燃烧优化模型预测控制[J]. 化工学报, 2024, 75(3): 924-935. |
| [13] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
| [14] | 孙冰颜, 王海清, 张玉涛, 汪肆杰. 非恒定故障率安全联锁系统执行机构的时变竞争失效研究[J]. 化工学报, 2024, 75(12): 4646-4653. |
| [15] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号