1 |
Lillo-RódenasM A, Carratalá-AbrilJ, Cazorla-AmorósD, et al. Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations [J]. Fuel Processing Technology, 2002, 77(2): 331-336.
|
2 |
PierreM, Marie-HeleneM, Jean-NoelF. Measurement and modeling of single- and multi-component adsorption equilibria of VOC on high-silica zeolites [J]. Environmental Science & Technology, 2003, 37(11): 2410-2414.
|
3 |
YunJ H, ChoiD K, MoonH. Benzene adsorption and hot purge regeneration in activated carbon beds [J]. Chemical Engineering Science, 2000, 55(23): 5857-5872.
|
4 |
BurghardtA, BartelmusG, GancarczykA. Hydrodynamics of pulsing flow in three-phase chemical reactors [J]. Chemical Engineering & Processing Process Intensification, 1999, 38(4/5/6): 411-426.
|
5 |
LakotaA, LevecJ, CarbonellR G. Hydrodynamics of trickling flow in packed beds: relative permeability concept [J]. AIChE Journal, 2010, 48(4): 731-738.
|
6 |
MacDonaldI F, ElsayedM S, MowK, et al. Flow through porous media—the Ergun equation revisited [J]. Ind.Eng.Chem.Fundam., 1979, 18(3): 199-208.
|
7 |
RoseA W. Porous media: fluid transport and pore structure (2nd Ed.)F.A.L. Dullien. Academic Press, San Diego, CA, 1992, 574 pp., US$99.00 [J]. Journal of Geochemical Exploration, 1993, 48(3): 372.
|
8 |
ErgunS. Fluid flow through packed columns [J]. Chem.Eng.Prog., 1952, 48(2): 89-94.
|
9 |
NivenR K. Physical insight into the Ergun and Wen & Yu equations for fluid flow in packed and fluidised beds [J]. Chemical Engineering Science, 2002, 57(3): 527-534.
|
10 |
MayerhoferM, GovaertsJ, ParmentierN, et al. Experimental investigation of pressure drop in packed beds of irregular shaped wood particles [J]. Powder Technology, 2011, 205(1/2/3): 30-35.
|
11 |
NemecD, LevecJ. Flow through packed bed reactors(Ⅰ): Single-phase flow [J]. Chemical Engineering Science, 2005, 60(24): 6947-6957.
|
12 |
JamiA M, IzadpanahM R. Pressure drop, gas hold-up and heat transfer during single and two-phase flow through porous media [J]. International Journal of Heat & Fluid Flow, 2005, 26(1): 156-172.
|
13 |
LiL, MaW. Experimental study on the effective particle diameter of a packed bed with non-spherical particles [J]. Transport in Porous Media, 2011, 89(1): 35-48.
|
14 |
FoumenyE A, KulkarniA, RoshaniS, et al. Elucidation of pressure drop in packed-bed systems [J]. Applied Thermal Engineering, 1996, 16(3): 195-202.
|
15 |
FoumenyE A, RoshaniS. Mean voidage of packed beds of cylindrical particles [J]. Chemical Engineering Science, 1991, 46(9): 2363-2364.
|
16 |
HandleyD, HeggsP J. Momentum and heat transfer mechanisms in regular shaped packings [J]. Trans. Instn. Chem. Engrs., 1968, 46(9): T251-T264.
|
17 |
FoumenyE A, BenyahiaF, CastroJ A A, et al. Correlations of pressure drop in packed beds taking into account the effect of confining wall [J]. International Journal of Heat and Mass Transfer, 1993, 36(2): 536-540.
|
18 |
OzahiE, GundogduM Y, ÖCarpinlioglu M. A modification on Ergun s correlation for use in cylindrical packed beds with non-spherical particles [J]. Advanced Powder Technology, 2008, 19(4): 369-381.
|
19 |
LevaM. Fluidization [M]. McGraw-Hill, 1959: 68-70.
|
20 |
ZouR P, YuA B. Evaluation of the packing characteristics of mono-sized non-spherical particles [J]. Powder Technology, 1996, 88(1): 71-79.
|
21 |
ClavierR, ChikhiN, FichotF, et al. Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter [J]. Nuclear Engineering & Design, 2015, 292(B4): 222-236.
|
22 |
PahlM H. Über die Kennzeichnung diskret disperser Systeme und die systematische variation der Einflußgrößen zur Ermittlung eines allgemeingültigeren Widerstandsgesetzes der Porenströmung [D]. University of Karlsruhe, 1975.
|
23 |
ReicheltW. Zur Berechnung des Druckverlustes einphasig durchströmter Kugel‐und Zylinderschüttungen [J]. Chemie Ingenieur Technik, 1972, 44(18): 1068-1071.
|
24 |
EnglandR, GunnD. Dispersion, pressure drop, and chemical reaction in packed beds of cylindrical particles [J]. Trans. Instn. Chem. Engrs., 1970, 48:T265-T275.
|
25 |
YuB M, LiJ H. A geometry model for tortuosity of flow path in porous media [J]. Chin. Phys. Lett., 2004, 21(8): 1569-1571.
|
26 |
WuJ, YuB, YunM. A resistance model for flow through porous media [J]. International Journal of Heat & Mass Transfer, 2008, 71(3): 331-343.
|
27 |
ParkJ H, LeeM, MoriyamaK, et al. Influence of particle morphology on pressure gradients of single-phase air flow in the mono-size non-spherical particle beds [J]. Annals of Nuclear Energy, 2018, 115:1-8.
|
28 |
ChikhiN, CoindreauO, LiL X, et al. Evaluation of an effective diameter to study quenching and dry-out of complex debris bed [J]. Annals of Nuclear Energy, 2014, 74:24-41.
|
29 |
FeliceR D, GibilaroL G. Wall effects for the pressure drop in fixed beds [J]. Chemical Engineering Science, 2004, 59(14): 3037-3040.
|
30 |
ScottG D. Packing of spheres: packing of equal spheres [J]. Nature, 1960, 188(4754): 908-909.
|
31 |
YuA B, ZouR P, StandishN. Packing of ternary mixtures of nonspherical particles [J]. Journal of the American Ceramic Society, 2010, 75(10): 2765-2772.
|
32 |
HwangK S, ChoiD K, GongS Y, et al. Adsorption and thermal regeneration of methylene chloride vapor on an activated carbon bed [J]. Chemical Engineering Science, 1997, 52(7): 1111-1123.
|
33 |
HuangC C, FairJ R. Study of the adsorption and desorption of multiple adsorbates in a fixed bed [J]. AIChE Journal, 2010, 34(11): 1861-1877.
|
34 |
NastajJ, AmbrożekB. Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents [J]. Chemical Engineering & Processing Process Intensification, 2015, 96:44-53.
|
35 |
GabruśE, NastajJ, TaberoP, et al. Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: aliphatic alcohols dewatering-water desorption [J]. Chemical Engineering Journal, 2015, 259(2): 232-242.
|
36 |
MoonD K, ParkY, KimS H, et al. Analysis of thermal parameter effects on an adsorption bed for purification and bulk separation [J]. Separation & Purification Technology, 2017, 181:95-106.
|