CIESC Journal ›› 2019, Vol. 70 ›› Issue (10): 3836-3846.DOI: 10.11949/0438-1157.20190621
• Reviews and monographs • Previous Articles Next Articles
Junfeng WANG1,2(),Yi NIE1,2,Binqi WANG1,Zhaoqing KANG2,Le ZHOU1,2,Fengjiao PAN2,Xiangping ZHANG1,2()
Received:
2019-06-04
Revised:
2019-07-12
Online:
2019-10-05
Published:
2019-10-05
Contact:
Xiangping ZHANG
王均凤1,2(),聂毅1,2,王斌琦1,康召青2,周乐1,2,潘凤娇2,张香平1,2()
通讯作者:
张香平
作者简介:
王均凤(1974—),女,博士,副研究员,基金资助:
CLC Number:
Junfeng WANG, Yi NIE, Binqi WANG, Zhaoqing KANG, Le ZHOU, Fengjiao PAN, Xiangping ZHANG. Manufacturing technology and development direction on regenerated cellulose fibers using ionic liquids[J]. CIESC Journal, 2019, 70(10): 3836-3846.
王均凤, 聂毅, 王斌琦, 康召青, 周乐, 潘凤娇, 张香平. 离子液体法再生纤维素纤维制造技术及发展趋势[J]. 化工学报, 2019, 70(10): 3836-3846.
纤维材料 | 再生纤维类型 | 溶剂 | DP | 纤维素含量/%(mass) | 溶解温度/℃ | 喷头直径/μm | 空隙/mm | 拉伸比 | 断裂强度/ (cN/dtex) | 伸长率/% |
---|---|---|---|---|---|---|---|---|---|---|
山毛榉[ | Ioncell | [Amim]Cl | 1180 | 12.5 | 75 | 100 | — | 10.5 | 3.22 | 8.4 |
桉树[ | Ioncell | [Amim]Cl | 815 | 10 | 100 | 100 | — | 8.6 | 2.68 | 10.8 |
桉树[ | Ioncell | [Amim]Cl | 790 | 11 | 70 | 100 | — | 6.2 | 4.16 | 12.2 |
桉树[ | Ioncell | [Bmim]Ac | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
桉树[ | Ioncell | [Bmim]Cl | 514 | 13.6 | 116 | 100 | 80 | 10.6 | 5.34 | 13.1 |
桉树[ | Ioncell | [Bmim]Cl | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
棉[ | Ioncell | [Bmim]Cl | 514 | 5 | 90 | 150 | 80 | 5 | 4.21 | 6.2 |
桉树[ | Ioncell | [Emim]Ac | 592 | 10 | 20 | 90 | 10 | 2.3 | 2.46 | 3.8 |
桉树[ | Ioncell | [Emim]Ac | 515 | 19.6 | 99 | 90 | 40 | 10.3 | 4.56 | 11.2 |
竹子[ | Ioncell | [Emim]Ac | 1120 | 8 | 85 | 145 | 50 | 3.5 | 3.2 | 7.8 |
竹茎[ | Ioncell | [Emim]Ac | — | 5 | 175 | 210 | — | — | 1.05 | 9.45 |
桉树[ | Ioncell | [Eimm]Cl | 493 | 15.8 | 99 | 90 | 55 | 7.9 | 5.31 | 12.9 |
桉树[ | Ioncell | [Emim]Dep | 592 | 10 | 60 | 90 | 10 | 1.9 | 2.64 | 6 |
桉树[ | Ioncell | [DBNH]Ac | 1489 | 13 | 70 | 100 | 10 | 7.5 | 3.85 | — |
桉树[ | Ioncell | [TMGH]Ac | 1489 | 13 | 80 | 100 | 10 | 2.9 | 1.09 | — |
棉短绒[ | Lyocell | DMSO | 1600 | 6~8 | 110 | 150 | 20 | — | 3.7~5.4 | 1.9~6.6 |
纤维素[ | 黏胶纤维 | NaOH/CS2 | 235~300 | — | — | — | — | — | 1.8~2.5 | 18~23 |
Table 1 Performance of Ioncell, Lyocell and viscous fibers
纤维材料 | 再生纤维类型 | 溶剂 | DP | 纤维素含量/%(mass) | 溶解温度/℃ | 喷头直径/μm | 空隙/mm | 拉伸比 | 断裂强度/ (cN/dtex) | 伸长率/% |
---|---|---|---|---|---|---|---|---|---|---|
山毛榉[ | Ioncell | [Amim]Cl | 1180 | 12.5 | 75 | 100 | — | 10.5 | 3.22 | 8.4 |
桉树[ | Ioncell | [Amim]Cl | 815 | 10 | 100 | 100 | — | 8.6 | 2.68 | 10.8 |
桉树[ | Ioncell | [Amim]Cl | 790 | 11 | 70 | 100 | — | 6.2 | 4.16 | 12.2 |
桉树[ | Ioncell | [Bmim]Ac | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
桉树[ | Ioncell | [Bmim]Cl | 514 | 13.6 | 116 | 100 | 80 | 10.6 | 5.34 | 13.1 |
桉树[ | Ioncell | [Bmim]Cl | 486 | 13.2 | 90 | 90 | 60 | 7.3 | 4.41 | 15.5 |
棉[ | Ioncell | [Bmim]Cl | 514 | 5 | 90 | 150 | 80 | 5 | 4.21 | 6.2 |
桉树[ | Ioncell | [Emim]Ac | 592 | 10 | 20 | 90 | 10 | 2.3 | 2.46 | 3.8 |
桉树[ | Ioncell | [Emim]Ac | 515 | 19.6 | 99 | 90 | 40 | 10.3 | 4.56 | 11.2 |
竹子[ | Ioncell | [Emim]Ac | 1120 | 8 | 85 | 145 | 50 | 3.5 | 3.2 | 7.8 |
竹茎[ | Ioncell | [Emim]Ac | — | 5 | 175 | 210 | — | — | 1.05 | 9.45 |
桉树[ | Ioncell | [Eimm]Cl | 493 | 15.8 | 99 | 90 | 55 | 7.9 | 5.31 | 12.9 |
桉树[ | Ioncell | [Emim]Dep | 592 | 10 | 60 | 90 | 10 | 1.9 | 2.64 | 6 |
桉树[ | Ioncell | [DBNH]Ac | 1489 | 13 | 70 | 100 | 10 | 7.5 | 3.85 | — |
桉树[ | Ioncell | [TMGH]Ac | 1489 | 13 | 80 | 100 | 10 | 2.9 | 1.09 | — |
棉短绒[ | Lyocell | DMSO | 1600 | 6~8 | 110 | 150 | 20 | — | 3.7~5.4 | 1.9~6.6 |
纤维素[ | 黏胶纤维 | NaOH/CS2 | 235~300 | — | — | — | — | — | 1.8~2.5 | 18~23 |
再生纤维素纤维类型 | 应用领域 |
---|---|
Lyocell | 主要用于服装、装饰及产业用三大领域 |
黏胶纤维 | 服装、民用、轮胎帘子线等 |
竹纤维 | 高档服装,家用纺织品等 |
丽赛纤维 | 功能化服装等 |
香蕉纤维 | 医疗、电子材料、复合材料和模塑材料等 |
Table 2 Application fields of cellulose fiber
再生纤维素纤维类型 | 应用领域 |
---|---|
Lyocell | 主要用于服装、装饰及产业用三大领域 |
黏胶纤维 | 服装、民用、轮胎帘子线等 |
竹纤维 | 高档服装,家用纺织品等 |
丽赛纤维 | 功能化服装等 |
香蕉纤维 | 医疗、电子材料、复合材料和模塑材料等 |
1 | WoodingsC. Regenerated Cellulose Fibres[M]. Amsterdam: Elsevier, 2001. |
2 | ZhouR, LiC G, YangM X. Comparative study on structural performance of several new regenerated cellulose fibers[J]. Advanced Materials Research, 2012, 573/574: 174-180. |
3 | 杨明霞, 沈兰萍. 新型再生纤维素纤维的现状及发展趋势[J]. 纺织科技进展, 2011, (2): 16-20. |
YangM X, ShenL P. Development status and strend of new regenerated cellulose fiber[J]. Progress in Textile Science & Technology, 2011, (2): 16-20. | |
4 | 李雄彪. 纤维素的化学结构,生物合成和糖化研究[J]. 大自然探索, 1992, (1): 56-62. |
LiX B. Structure, biosynthesis and saccharification of cellulose[J]. Exploration of Nature, 1992, (1): 56-62. | |
5 | 刘洁, 杨肖婉, 齐静. 再生纤维素纤维溶剂体系的发展[J]. 纺织导报, 2018, (3): 36-38. |
LiuJ, YangX W, QiJ. The development of solvent system for regenerated cellulose fiber[J]. China Textile Leader, 2018, (3): 36-38. | |
6 | PerepelkinK. Ways of developing chemical fibres based on cellulose: viscose fibres and their prospects (Part 1): Development of viscose fibre technology. Alternative hydrated cellulose fibre technology[J]. Fibre Chemistry, 2008, 40(1): 10-23. |
7 | MoritzA J L, JacksonA L, ThurmondG I. Manufacture of rayon: US 2346696[P]. 1944-4-18. |
8 | 季柳炎. 从百年发展史看粘胶纤维之未来[J]. 纺织科学研究, 2017, (10): 25-29. |
JiL Y. Prospecting the future of viscose fiber from the development history of one hundred year[J]. Textile Science Research, 2017, (10): 25-29. | |
9 | 刘为民. 上规模 降成本 增效益——粘胶纤维行业及上市公司比较分析[J]. 中国纺织, 1999, (6): 20-23. |
LiuW M. Upscale, cutting cose, increasing benefit—comparative analysis of viscose fiber industry and listed cmpany[J]. China Textile, 1999, (6): 20-23. | |
10 | 季柳炎. 2018~2019年我国粘胶短纤维市场回顾与展望[J]. 人造纤维, 2019, (1): 28-32. |
JiL Y. Review and prospect of viscose staple fiber market in China from 2018 to 2019[J]. Artificial Fiber, 2019, (1): 28-32. | |
11 | RanabhatR. Environmental impact of textile fibers: a case study of Nextiili-paja[D]. Tampere: Tampere University of Applied Sciences, 2019: 15-16. |
12 | ZhangH X, ZhangX C, XuR C. Structure and thermo-regulated performance of outlast viscose fiber[J]. Advanced Materials Research, 2011, 332/333/334: 812-815. |
13 | KonwarhR, KarakN, MisraM. Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications[J]. Biotechnology Advances, 2013, 31(4): 421-437. |
14 | HatuaP, MajumdarA, DasA. Comparative analysis of in vitro ultraviolet radiation protection of fabrics woven from cotton and bamboo viscose yarns[J]. Journal of the Textile Institute Proceedings & Abstracts, 2013, 104(7): 708-714. |
15 | 董奎勇, 杨萍. Lyocell纤维发展概况及趋势[J]. 中国纤检, 2004, (11): 40-42. |
DongK Y, YangP. Developmet situation and trend of Lyocell fiber[J]. China Fiber Inspection, 2004, (11): 40-42. | |
16 | 王乐军, 刘怡宁, 房迪, 等. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(4): 164-170. |
WangL J, LiuY N, FangD, et al. Status and development research of Lyocell fiber at home and abroad[J]. Journal of Textile Research, 2017, 38(4): 164-170. | |
17 | SwatloskiR P, SpearS K, HolbreyJ D, et al. Dissolution of cellulose with ionic liquids[J]. Journal of America Chemistry Society, 2002, 124 (18): 4974-4975. |
18 | SunN, SwatloskiR P, MaximM L, et al. Magnetite-embedded cellulose fibers prepared from ionic liquid[J]. Journal of Materials Chemistry, 2008, 18(3): 283-290. |
19 | JiangG S, HuangW F, WangB C, et al. The changes of crystalline structure of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride[J]. Cellulose, 2012, 19(3): 679-685. |
20 | JiangG S, HuangW F, LiL, et al. Structure and properties of regenerated cellulose fibers from different technology processes[J]. Carbohydrate Polymers, 2012, 87(3): 2012-2018. |
21 | LiuY R, ThomsenK, NieY, et al. Predictive screening of ionic liquids for dissolving cellulose and experimental verification[J]. Green Chemistry, 2016, 18(23): 6246-6254. |
22 | HermanutzF, VochtM P, PanzierN, et al. Processing of cellulose using ionic liquids[J]. Macromolecular Materials and Engineering, 2019, 304: 1-8. |
23 | 任强, 武进, 张军, 等. 1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究[J]. 高分子学报, 2003, (3): 448-451. |
RenQ, WuJ, ZhangJ, et al. Synthesis of 1-allyl-3-methylimicazolium-based room temperature ionic liquid and preliminary study of its dissolving cellulose[J]. Acta Polymerica Sinica, 2003, (3): 448-451. | |
24 | ZhangH, WangZ G, ZhangZ N, et al. Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride[J]. Advance Materials, 2007, 19(5): 698-704. |
25 | HermanutzF, GaehrF, UerdingenE, et al. New developments in dissolving and processing of cellulose in ionic liquids[J]. Macromolecular Symposia, 2008, 262: 23-27. |
26 | FukayaY, HayashiK, WadaM, et al. Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions[J]. Green Chemistry, 2008, 10(1): 44-46. |
27 | NieY, LiC X, SunA J, et al. Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids[J]. Energy & Fuel, 2006, 20 (5): 2083-2087. |
28 | KamiyaN, MatsushitaY, HanakiM, et al. Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media[J]. Biotechnology Letters, 2008, 30(6): 1037-1040. |
29 | ZhuC, RichardsonR M, PotterK D, et al. High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4545-4553. |
30 | ZhuC C, KoutsomitopoulouA F, EichhornS J, et al. High stiffness cellulose fibers from low molecular weight microcrystalline cellulose solutions using DMSO as co-solvent with ionic liquid[J]. Macromolecular Materials and Engineering, 2018, 303(5): 1-6. |
31 | SixtaH, MichudA, HauruL, et al. Ioncell-F: a high-strength regenerated cellulose fiber[J]. Nord. Pulp. Pap. Res. J., 2015, 30(1): 43-57. |
32 | MichudA, TanttuM, AsaadiS, et al. Ioncell-F: ionic liquid-based cellulosic textile fibers as an alternative to viscose and Lyocell[J]. Textile Research Journal, 2016, 86(5): 543-552. |
33 | StepanA M, MichudA, HelistenS, et al. IONCELL-P&F: pulp fractionation and fiber spinning with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2016, 55(29): 8225-8233. |
34 | AsaadiS, HummelM, AhvenainenP, et al. Structural analysis of Ioncell-F fibers from birch wood[J]. Carbohydrate Polymers, 2018, 181: 893-901. |
35 | MaY, HummelM, KontroI, et al. High performance man-made cellulosic fibers from recycled newsprint[J]. Green Chemistry, 2018, 20(1): 160-169. |
36 | HummelM, MichudA, TanttuM, et al. Ionic liquids for the production of man-made cellulosic fibers opportunities and challenges[M]// Rojas O J. Advances in Polymer Science. Berlin: Springer, 2016: 133-168. |
37 | ChenJ H, XuJ K, HuangP L, et al. Effect of alkaline pretreatment on the preparation of regenerated lignocellulose fibers from bamboo stem[J]. Cellulose, 2016, 23(4): 2727-2739. |
38 | HauruL K J, HummelM, MichudA, et al. Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution[J]. Cellulose, 2014, 21(6): 4471-4481. |
39 | YooM K, RezaM S, KimI M, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter Pulp/NMMO solution[J]. Fiber and Polymers, 2015, 16(8): 1618-1628. |
40 | KrezeT, MalejS. Structural characteristics of new and conventional regenerated cellulosic fibers[J]. Textile Research Journal, 2003, 73(8): 675-684. |
41 | ChenJ H, GuanY, WangK, et al. Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers[J]. Cellulose, 2015, 22(3): 1505-1516. |
42 | SharmaA, NagarkarS, ThakreS, et al. Structure–property relations in regenerated cellulose fibers: comparison of fibers manufactured using viscose and Lyocell processes[J]. Cellulose, 2019, 26(6): 3655-3669. |
43 | CarrilloF, ColomX, SuñolJ J, et al. Structural FTIR analysis and thermal characterisation of Lyocell and viscose-type fibers[J]. European Polymer Journal, 2004, 40(9): 2229-2234. |
44 | de SilvaR, ByrneN. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties[J]. Carbohydrate Polymers, 2017, 174: 89-94. |
45 | BulotaM, MichudA, HummelM, et al. The effect of hydration on the micromechanics of regenerated cellulose fibers from ionic liquid solutions of varying draw ratios[J]. Carbohydrate Polymers, 2016, 151: 1110-1114. |
46 | AsaadiS, HummelM, HellstenS, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid[J]. ChemSusChem, 2016, 9: 3250-3258. |
47 | MichudA, HummelM, SixtaH. Influence of process parameters on the structure formation of man-made cellulosic fibers from ionic liquid solution[J]. Journal of Applied Polymer Science, 2016, 133(30): 43718-43726. |
48 | 纤维材料的特征及行业市场需求情况分析[EB/OL]. [2019-05-29]. . |
Characteristics of fiber material and demand analysis of industrial market[EB/OL]. [2019-05-29]. . | |
49 | 再生纤维机会来临发展前景好[EB/OL]. [2019-05-29]. . |
Good development future of regenerated fiber[EB/OL]. [2019-05-29]. . | |
50 | 全球化纤中短期发展预测及产业用纤维发展趋势[EB/OL]. [2019-05-29]. . |
Forecast of mid- or short-fiber and development trend of industrial fiber in the world [EB/OL]. [2019-05-29]. . | |
51 | 汪进秋. 粘胶纤维生产工艺技术[J]. 人造纤维, 2000, (1): 42-44. |
WangJ Q. Technology of viscose fiber[J]. Artificial Fiber, 2000, (1): 42-44. | |
52 | 王建荣, 刘杰. 浸渍压榨液半纤维素含量测定方法改进探讨[J]. 人造纤维, 2014, 44(6): 25-27. |
WangJ R, LiuJ. Improvement discussion for the measurement method of hemicellulose content in the pressed liquor [J]. Artificial Fiber, 2014, 44(6): 25-27. | |
53 | RajalaxmiD, JiangN, LeslieG, et al. Synthesis of novel water-soluble sulfonated cellulose[J]. Carbohydrate Research, 2010, 345(2): 284-290. |
54 | IvanovA A, RzhevtsevaY I, KimV P. Effect of precipitation bath composition on the process of spinning viscose yarn[J]. Fiber Chemistry, 1987, 19(1): 57-60. |
55 | WilkesA G. The viscose process[M]// Woodings C. Regenerated Cellulose Fibers. England: Woodhead Publishing Limited, 2001: 37-61. |
56 | WuC, ZhouS, ZhaoC, et al. Improved reactivity of bamboo dissolving pulp for the viscose process: post-treatment with beating[J]. BioResources, 2014, 9(2): 3449-3455. |
57 | 雷海斌. Lyocell纤维纺丝溶剂NMMO溶液蒸发特性研究[J]. 福建轻纺, 2017, (8): 33-35. |
LeiH B. Study on evaporation characteristic of NMMO solution obtained during the process of Lyocell fiber spinning [J]. The Light&Textile Industries of Fujian, 2017, (8): 33-35. | |
58 | KosanB, MichelsC, MeisterF. Dissolution and forming of cellulose with ionic liquids[J]. Cellulose, 2008, 15(1): 59-66. |
59 | ZhangJ M, ZhangH, WuJ, et al. NMR spectroscopic studies of cellulose solvation in [Emim]Ac aimed to understand the dissolution mechanism of cellulose in ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1941-1947. |
60 | LiY, WangJ J, LiuX M, et al. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects[J]. Chemical Science, 2018, 9 (17): 4027-4043. |
61 | FengL, ChenZ I. Research progress on dissolution and functional modification of cellulose in ionic liquids[J]. Journal of Molecular Liquids, 2008, 142(1-3): 1-5. |
62 | XuJ L, YaoX Q, XinJ Y, et al. An effective two-step ionic liquids method for cornstalk pretreatment[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2057-2065. |
63 | ZhongX J, FanZ, LiuZ P, et al. Local structure evolution and its connection to thermodynamic and transport properties of 1-butyl-3-methylimidazolium tetrafluoroborate and water mixtures by molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2012, 116: 3249-3263. |
64 | WangJ F, LuoJ Q, ZhangX P, et al. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling[J]. Separation & Purification Technology, 2016, 165: 18-26. |
65 | DengY, LongT, ZhangD, et al. Phase diagram of [Amim]Cl plus salt aqueous biphasic systems and its application for [Amim]Cl recovery[J]. Journal of Chemical & Engineering Data, 2009, 54(9): 2470-2473. |
66 | LiC, HanJ, WangY, et al. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts[J]. Journal of Chemical & Engineering Data, 2009, 55(3): 1087-1092. |
67 | PengX, HuY, LiuY, et al. Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates[J]. Journal of Natural Gas Chemistry, 2010, 19(1): 81-85. |
68 | WangJ, LuoJ, ZhangX, et al. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling [J]. Separation and Purification Technology, 2016, 165: 18-26. |
69 | GanQ, XueM, RooneyD. A study of fluid properties and microfiltration characteristics of room temperature ionic liquids [C10min][NTf2] and N8881[NTf2] and their polar solvent mixtures[J]. Separation and Purification Technology, 2006, 51(2): 185-192. |
70 | WangX, NieY, ZhangX, et al. Recovery of ionic liquids from dilute aqueous solutions by electrodialysis[J]. Desalination, 2012, 285: 205-212. |
71 | HuangK L, WuR, CaoY, et al. Recycling and reuse of ionic liquid in homogeneous cellulose acetylation[J]. Chinese Journal of Chemical Engineering, 2013, 21(5): 577-584. |
72 | EarleM J, SeddonK R. Preparation of imidazole carbenes and the use thereof for the synthesis of ionic liquids: WO/2001/077081[P]. 2001-04-05. |
[1] | CAI Weibin, XIA Yang, WANG Yujun, LI Jiding, ZHU Shenlin. Nanofiltration performance and mass transfer characteristics of PDMS/PVDF composite membranes filled with white carbon black [J]. CIESC Journal, 2015, 66(7): 2555-2564. |
[2] | CHEN Jinghuan, WANG Kun, XU Feng, SUN Runcang. Progress of preparing regenerated cellulose fibers using novel dissolution process [J]. , 2014, 65(11): 4213-4221. |
[3] | CAI Weibin, PIAO Xianglan, LI Jiding, ZHU Shenlin. Solvent recovery performance of PDMS/PVDF composite nanofiltration membranes cured with different cross-linking reagents [J]. CIESC Journal, 2013, 64(2): 581-589. |
[4] | LI Yichuan1, SHEN Benxian1, Wang Lei1,2, XIAO Weiguo2, ZHAO Jigang1. Energy consumption simulation and optimization of solvent recovery process in direct epoxidation of propylene [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2806-2810. |
[5] | CAI Weibin, SUN Yanzhi, PIAO Xianglan, LI Jiding, ZHU Shenlin. Solvent Recovery from Soybean Oil/Hexane Miscella by PDMS Composite Membrane [J]. , 2011, 19(4): 575-580. |
[6] | XU Shengang,LIU Minying,CAO Shaokui,LIU Chufeng,JIA Junjiang,XIE Yueting. Progress of viscose rayon and Lyocell fibers used as tobacco filter materials [J]. , 2008, 27(11): 1756-. |
[7] | HUAChao,LIXingang,XUShimin, BAIPeng. Design and operation of batch extractive distillation with two reboilers [J]. , 2007, 15(2): 286-290. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1101
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 739
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||