1 |
陈敏恒, 袁渭康 . 工业反应过程的开发方法[J]. 化学工程, 1984, (6):55-61.
|
|
Chen M H , Yuan W K . Methodology for the development of industrial reaction processes[J]. Chemical Engineering, 1984, (6): 55-61.
|
2 |
黄华江 . 实用化工计算机模拟——Matlab在化学工程中的应用[M]. 北京: 化学工业出版社, 2004.
|
|
Huang H J . Practical Computer Simulation of Chemical Processes-MATLAB’s Application in Chemical Engineering[M]. Beijing: Chemical Industry Press, 2004.
|
3 |
Duduković M P . Reaction engineering: status and future challenges[J]. Chemical Engineering Science, 2010, 65(1): 3-11.
|
4 |
Duduković M P , Mills P . Scale-up and multiphase reaction engineering[J]. Current Opinion in Chemical Engineering, 2015, 9: 49-58.
|
5 |
Trambouze P , van Landeghem H , Wauquier J P . Chemical Reactors: Design, Engineering, Operation[M]. Houston: Gulf Publishing, 1988.
|
6 |
Edgeworth J R , Thring M W . Pilot Plants. Models and Scale-up Methods in Chemical Engineering[M]. New York: McGraw-Hill, 1957.
|
7 |
Bisio A , Kabel R L . Scaleup of Chemical Process-Conversion from Laboratory Scale Tests to Successful Commercial Size Design[M]. Hoboken: John Wiley & Sons, 1985.
|
8 |
Klipstein D H , Robinson S . Vision 2020: reaction engineering roadmap[R]. The Center for Waste Reduction Technologies of the AIChE. 2001: 1-91.
|
9 |
Stitt H , Marigo M , Wilkinson S , et al . How good is your model? “Just because the results are in colour, it doesn t mean they are right”[J]. Johnson Mathey Technology Review, 2015, 59(2): 74-89.
|
10 |
Burwell R L . Catalysis—a retrospective[J]. Chemtech, 1987, 17(10): 586-592.
|
11 |
Laidler K J . Chemical Kinetics[M]. New York: Harper & Row, 1987.
|
12 |
Thomas J M , Thomas W J . Principles and Practice of Heterogeneous Catalysis[M]. Hoboken: John Wiley & Sons, 1997.
|
13 |
Langmuir I . The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
|
14 |
吉媛媛, 杨继礼, 相宏伟, 等 . Fe-Mn工业催化剂 FT合成详细机理动力学研究(Ⅰ): 反应性能及初步反应机理[J]. 燃料化学学报, 1999, (S 1): 130-137.
|
|
Ji Y Y , Yang J L , Xiang H W , et al . Study of FT synthesis detailed mechanism kinetics over Fe-Mn industrial catalyst(Ⅰ): Catalyst performance and preliminary mechanism[J]. Journal of Fuel Chemistry and Technology, 1999, (S 1): 130-137.
|
15 |
马文平, 李永旺, 赵玉龙, 等 . 工业 Fe-Cu-K 催化剂上费托合成反应动力学 (Ⅰ): 基于机理的动力学模型[J]. 化工学报, 1999, 50(2): 159-166.
|
|
Ma W P , Li Y W , Zhao Y L , et al . Kinetics of Fischer-Tropsch synthesis over Fe-Cu-K catalyst(Ⅰ): Kinetic model on the basis of mechanism[J]. Journal Chemical Industry and Engineering(China), 1999, 50(2): 159-166.
|
16 |
马文平, 李永旺, 赵玉龙, 等 . 工业 Fe-Cu-K 催化剂上费托合成反应动力学 (Ⅱ): 模型筛选与参数估值[J]. 化工学报, 1999, 50(2): 167-173.
|
|
Ma W P , Li Y W , Zhao Y L , et al . Kinetics of Fischer-Tropsch synthesis over Fe-Cu-K (Ⅱ): Catalyst model discrimination and parameter estimation[J]. Journal Chemical Industry and Engineering(China), 1999, 50(2): 167-173.
|
17 |
刘淑鹤, 方向晨, 张喜文, 等 . 丙烷脱氢催化反应机理及动力学研究进展[J]. 化工进展, 2009, 28(2): 259-266.
|
|
Liu S H , Fang X C , Zhang X W , et al . Advances in catalytic mechanisms and kinetics of propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2009, 28(2): 259-266.
|
18 |
Stansch Z , Mleczko L , Baerns M . Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst[J]. Industrial & Engineering Chemistry Research, 1997, 36(7): 2568-2579.
|
19 |
张爱勇, 肖羽堂, 吕晓龙, 等 . 悬浮型光催化纳滤膜反应器处理H酸废水光催化降解效率及反应动力学[J]. 化工进展, 2007, (11): 1610-1615.
|
|
Zhang A Y , Xiao Y T , Lyu X L , et al . Systematic investigation on photocatalytic degradation efficiency and kinetics of H-acid aqueous solution treated by suspended photocatalytic nanofiltration membrane reactor[J]. Chemical Industry and Engineering Progress, 2007, (11): 1610-1615.
|
20 |
廖东亮, 肖新颜, 邓沁, 等 . 二氧化钛光催化降解甲醛反应动力学研究[J]. 化工环保, 2003, (4): 191-194.
|
|
Liao D L , Xiao X Y , Deng Q , et al . Study on kinetics of formaldehyde photocatalytic degradation on titanium dioxide[J]. Environmental Protection of Chemical Industry, 2003, (4): 191-194.
|
21 |
彭尚, 孙丽霞, 熊珍爱, 等 . 等温滴定量热法测定酶催化反应的热动力学参数[J]. 化工进展, 2016, 35(11): 3459-3464.
|
|
Peng S , Sun L X , Xiong Z A , et al . Thermodynamics and kinetics of an enzyme-catalyzed reaction determined by isothermal titration calorimetry[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3459-3464.
|
22 |
Carrà S . Peculiarity and perspectives of catalytic reaction engineering[J]. Rendiconti Lincei, 2017, 28(1): 217-228.
|
23 |
魏焕梅, 李臻 . 甲缩醛合成反应及其动力学研究进展[J]. 化工进展, 2014, 33(2): 272-284.
|
|
Wei H M , Li Z . Advances in synthesis methods and kinetics of methylal[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 272-284.
|
24 |
Chen W Y , Ji J , Feng X , et al . Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane[J]. Journal of the American Chemical Society, 2014, 136(48): 16736-16739.
|
25 |
程振民, 朱开宏, 袁渭康 . 高等反应工程教程[M]. 上海: 华东理工大学出版社, 2010.
|
|
Cheng Z M , Zhu K H , Yuan W K . A Senior Course of Chemical Reaction Engineering on the Graduate Level[M]: Shanghai: East China University of Science and Technology Press, 2010.
|
26 |
王逸凝, 李永旺, 徐元源, 等 . 基于详细机理动力学的费-托合成单颗粒催化剂模(Ⅰ): 颗粒模型化与数值计算方法[J]. 催化学报, 2001, 22(1): 35-39.
|
|
Wang Y N , Li Y W , Xu Y Y , et al . Modeling of Fischer-Tropsch catalyst pellet on basis of detailed mechanism kinetics (Ⅰ): Catalyst pellet modeling and numerical computing method[J]. Chinese Journal of Catalysis, 2001, 22(1):35-39.
|
27 |
王逸凝, 李永旺, 徐元源, 等 . 基于详细机理动力学的费-托合成单颗粒催化剂模拟(Ⅱ):扩散反应行为及活性分布[J]. 催化学报, 2001, 22(1): 40-44.
|
|
Wang Y N , Li Y W , Xu Y Y , et al . Modeling of Fischer-Tropsch catalyst pellet on basis of detailed mechanism kinetics (Ⅱ): Diffusion-reaction behaviour and non-uniform activity distribution[J]. Chinese Journal of Catalysis, 2001, 22(1):40-44.
|
28 |
Morbidelli M , Servida A , Varma A . Optimal catalyst activity profiles in pellets(Ⅰ): The case of negligible external mass transfer resistance[J]. Industrial & Engineering Chemistry Fundamentals, 1982, 21(3): 278-284.
|
29 |
Morbidelli M , Varma A . Optimal catalyst activity profiles in pellets(Ⅱ): The influence of external mass transfer resistance[J]. Industrial & Engineering Chemistry Fundamentals, 1982, 21(3): 284-289.
|
30 |
吴华, 袁权, 朱葆琳 . 非等温催化剂颗粒上活性组分的最佳分布[J]. 化工学报, 1984, 35(4), 283-293.
|
|
Wu H , Yuan Q , Zhu B L . Optimal activity distribution in nonisothermal pellets[J]. Journal Chemical Industry and Engineering(China), 1984, 35(4): 283-293.
|
31 |
Dougherty R C , Verykios X E . Optimization of catalytic activity distributions in series and parallel reaction schemes[J]. AIChE Journal, 1986, 32(11): 1858-1863.
|
32 |
Vayenas C G , Pavlou S . Optimal catalyst distribution for selectivity maximization in nonisothermal pellets: the case of parallel reactions[J]. Chemical Engineering Science, 1988, 43(10): 2729-2740.
|
33 |
Wu H , Yuan Q , Zhu B L . An experimental investigation of optimal active catalyst distribution in nonisothermal pellets[J]. Industrial & Engineering Chemistry Research, 1988, 27(7): 1169-1174.
|
34 |
Wu H , Yuan Q , Zhu B L . An experimental study of optimal active catalyst distribution in pellets for maximum selectivity[J]. Industrial & Engineering Chemistry Research, 1990, 29(9): 1771-1776.
|
35 |
Carberry J J . Physico-Chemical Aspects of Mass and Heat Transfer in Heterogeneous Catalysis[M]. Berlin: Springer, 1987.
|
36 |
Wheeler A . Reaction rates and selectivity in catalyst pores[M]// Frankenburg W G, Komarewsky V I, Rideal E K, et al . Advances in Catalysis. Cambridge: Academic Press, 1951, 3: 249-327.
|
37 |
Weisz P B , Prater C D . Interpretation of measurements in experimental catalysis[M]// Frankenburg W G, Komarewsky V I, Rideal E K. Advances in Catalysis. Cambridge: Academic Press, 1954, 6: 143-196.
|
38 |
Zhao Y J , Zhou J , Zhang J G , et al . Selective hydrogenation of benzene to cyclohexene on a Ru/Al2O3/cordierite monolithic catalyst: effect of mass transfer on the catalytic performance[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4641-4647.
|
39 |
Yue H R , Zhao Y J , Zhao L , et al . Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: enhanced internal mass transfer and stability[J]. AIChE Journal, 2012, 58(9): 2798-2809.
|
40 |
Marshall J F , Weisz P B . Determination of diffusivities in catalyst particles[J]. Journal of Catalysis, 1988, 111(2): 460-463.
|
41 |
Zhou J , Wang Y D , Zou W , et al . Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310-9321.
|
42 |
时钧, 汪家鼎, 余国琮, 等 . 化学工程手册 [M]. 2版. 北京: 化学工业出版社, 1996.
|
|
Shi J , Wang J D , Yu G C , al et , Handbook of Chemical Engineering [M]. 2nd ed. Beijing: Chemical Industry Press, 1996.
|
43 |
Smith L A , Huddleston H M . New MTBE design now commercial[J]. Hydrocarbon Processing, 1982, 61(3): 121-123.
|
44 |
刘家祺 . 分离过程[M]. 北京: 化学工业出版社, 2001.
|
|
Liu J Q . Separation Processes[M]. Beijing: Chemical Industry Press, 2001.
|
45 |
巴尼基, 亨布尔, 费林, 等 . 在高级羧酸和均相催化剂存在下的甲醛的氢羧基化: 104254512A[P].2014-12-23.
|
|
Barney S D , Hempel R T , Flynn S N , et al . Hydrocarboxylation of formaldehyde over homgeneous catalyst under the condition of higher carboxylic acid: 104254512A[P].2014-12-23.
|