CIESC Journal ›› 2020, Vol. 71 ›› Issue (S2): 273-280.DOI: 10.11949/0438-1157.20200056
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Qingdi KE1(),Jie YANG1(),Qiankun LI2,Yaming TIAN2
Received:
2020-01-15
Revised:
2020-04-08
Online:
2020-11-06
Published:
2020-11-06
Contact:
Jie YANG
通讯作者:
杨杰
作者简介:
柯庆镝(1984—),男,博士,副教授,基金资助:
CLC Number:
Qingdi KE, Jie YANG, Qiankun LI, Yaming TIAN. Structure analysis for refrigerator molding layer door based on polymer foaming simulation[J]. CIESC Journal, 2020, 71(S2): 273-280.
柯庆镝, 杨杰, 李乾坤, 田亚明. 基于聚合物发泡过程参数模拟的冰箱门体成型层分析[J]. 化工学报, 2020, 71(S2): 273-280.
Add to citation manager EndNote|Ris|BibTeX
组分 | 质量分数/% |
---|---|
多元醇(HO-R′-OH) | 30~45 |
催化剂 | 3~4 |
物理发泡剂 | 15 |
水(H2O) | 1~2 |
异氰酸酯(OCN-R-NCO) | 40~60 |
其他必要成分 | 2~4 |
Table 1 Formulation of PU foam
组分 | 质量分数/% |
---|---|
多元醇(HO-R′-OH) | 30~45 |
催化剂 | 3~4 |
物理发泡剂 | 15 |
水(H2O) | 1~2 |
异氰酸酯(OCN-R-NCO) | 40~60 |
其他必要成分 | 2~4 |
反应时间/s | Hmin/cm | Hmax/cm | Ht/cm | V实验/cm3 | V仿真/cm3 | 误差/% | 密度/ (kg/m3) |
---|---|---|---|---|---|---|---|
4.0 | 1.70 | 1.70 | 1.70 | 534.056 | 555.61 | 4.04 | 926.87 |
8.0 | 3.50 | 3.50 | 3.50 | 1099.53 | 1015.93 | 7.61 | 450.19 |
12.0 | 5.40 | 5.40 | 5.40 | 1696.41 | 1728.14 | 1.87 | 291.79 |
16.0 | 7.60 | 7.80 | 7.70 | 2418.96 | 2620.24 | 8.32 | 204.63 |
20.0 | 11.10 | 11.40 | 11.25 | 3534.19 | 3602.71 | 1.95 | 140.06 |
24.0 | 15.70 | 16.60 | 16.15 | 5073.52 | 4782.62 | 5.75 | 97.57 |
28.0 | 20.90 | 21.70 | 21.30 | 6691.40 | 6451.81 | 3.60 | 73.98 |
32.0 | 26.50 | 27.40 | 26.95 | 8466.34 | 8878.54 | 4.88 | 58.47 |
36.0 | 33.20 | 35.50 | 34.35 | 10791.05 | 11757.58 | 8.94 | 45.87 |
40.0 | 37.40 | 39.70 | 38.55 | 12110.48 | 13301.12 | 9.84 | 40.87 |
44.0 | 40.10 | 43.70 | 41.90 | 13162.89 | 14108.11 | 7.29 | 37.61 |
Table 2 Experiment data
反应时间/s | Hmin/cm | Hmax/cm | Ht/cm | V实验/cm3 | V仿真/cm3 | 误差/% | 密度/ (kg/m3) |
---|---|---|---|---|---|---|---|
4.0 | 1.70 | 1.70 | 1.70 | 534.056 | 555.61 | 4.04 | 926.87 |
8.0 | 3.50 | 3.50 | 3.50 | 1099.53 | 1015.93 | 7.61 | 450.19 |
12.0 | 5.40 | 5.40 | 5.40 | 1696.41 | 1728.14 | 1.87 | 291.79 |
16.0 | 7.60 | 7.80 | 7.70 | 2418.96 | 2620.24 | 8.32 | 204.63 |
20.0 | 11.10 | 11.40 | 11.25 | 3534.19 | 3602.71 | 1.95 | 140.06 |
24.0 | 15.70 | 16.60 | 16.15 | 5073.52 | 4782.62 | 5.75 | 97.57 |
28.0 | 20.90 | 21.70 | 21.30 | 6691.40 | 6451.81 | 3.60 | 73.98 |
32.0 | 26.50 | 27.40 | 26.95 | 8466.34 | 8878.54 | 4.88 | 58.47 |
36.0 | 33.20 | 35.50 | 34.35 | 10791.05 | 11757.58 | 8.94 | 45.87 |
40.0 | 37.40 | 39.70 | 38.55 | 12110.48 | 13301.12 | 9.84 | 40.87 |
44.0 | 40.10 | 43.70 | 41.90 | 13162.89 | 14108.11 | 7.29 | 37.61 |
设置内容 | 参数 |
---|---|
模型尺寸(圆柱体) | 直径D=0.2 m,高H=1 m |
流体域 | 整个圆柱体 |
网格划分软件 | Fluent Meshing |
网格尺度 | 10~15 mm |
网格类型 | 多面体-六面体核心 |
网格质量 | 0.3972 |
总网格数 | 31769个 |
模拟方法 | 瞬态 |
出口边界设置 | 圆柱体上表面 |
多相流模型 | VOF模型 |
初相 | 空气 |
次相 | PU泡沫 |
初相设定 | Fluent材料库 |
次相设定 | 自定义函数(UDF)设定 |
湍流模型 | 标准k-ε方程模型 |
壁面函数 | 标准壁面函数 |
出口边界条件 | 压力出口边界条件 |
速度和压力耦合求解算法 | PISO算法 |
初始条件 | 大气条件 |
Table 3 Parameter setting and method of simulation model
设置内容 | 参数 |
---|---|
模型尺寸(圆柱体) | 直径D=0.2 m,高H=1 m |
流体域 | 整个圆柱体 |
网格划分软件 | Fluent Meshing |
网格尺度 | 10~15 mm |
网格类型 | 多面体-六面体核心 |
网格质量 | 0.3972 |
总网格数 | 31769个 |
模拟方法 | 瞬态 |
出口边界设置 | 圆柱体上表面 |
多相流模型 | VOF模型 |
初相 | 空气 |
次相 | PU泡沫 |
初相设定 | Fluent材料库 |
次相设定 | 自定义函数(UDF)设定 |
湍流模型 | 标准k-ε方程模型 |
壁面函数 | 标准壁面函数 |
出口边界条件 | 压力出口边界条件 |
速度和压力耦合求解算法 | PISO算法 |
初始条件 | 大气条件 |
设置内容 | 参数 |
---|---|
模型尺寸 | 1050 mm×450 mm×84 mm |
流体域 | 整个门体发泡层 |
网格尺度 | 0.5~4.0 mm |
网格类型 | 多面体-六面体核心 |
网格质量 | 0.5991 |
总网格数 | 96818个 |
模拟方法 | 瞬态 |
多相流模型 | VOF模型 |
初相 | 空气 |
次相 | PU泡沫 |
初相设定 | Fluent材料库 |
次相设定 | 自定义函数(UDF)设定 |
湍流模型 | 标准k-ε方程模型 |
壁面函数 | 标准壁面函数 |
出口边界条件 | 压力出口边界条件 |
速度和压力耦合求解算法 | PISO算法 |
Table 4 Parameter setting and method of door simulation model
设置内容 | 参数 |
---|---|
模型尺寸 | 1050 mm×450 mm×84 mm |
流体域 | 整个门体发泡层 |
网格尺度 | 0.5~4.0 mm |
网格类型 | 多面体-六面体核心 |
网格质量 | 0.5991 |
总网格数 | 96818个 |
模拟方法 | 瞬态 |
多相流模型 | VOF模型 |
初相 | 空气 |
次相 | PU泡沫 |
初相设定 | Fluent材料库 |
次相设定 | 自定义函数(UDF)设定 |
湍流模型 | 标准k-ε方程模型 |
壁面函数 | 标准壁面函数 |
出口边界条件 | 压力出口边界条件 |
速度和压力耦合求解算法 | PISO算法 |
1 | 张聪聪, 郑梦凯, 李伯耿. 软段结构对聚氨酯弹性体性能的影响[J]. 化工学报, 2019, 70(10): 4043-4051. |
Zhang C C, Zheng M K, Li B G. Effect of soft segment structure on properties of polyurethane elastomers [J]. CIESC Journal, 2019, 70(10): 4043-4051. | |
2 | 陈旭亮, 任强, 宋艳, 等. 基于醇胺固定-释放二氧化碳原理的聚氨酯泡沫绿色制备[J]. 化工学报, 2017, 68(11): 4383-4389. |
Chen X L, Ren Q, Song Y, et al. Ammonium carbamate from diethanolamine for green foaming of polyurethanes with carbon dioxide [J]. CIESC Journal, 2017, 68(11): 4383-4389. | |
3 | 干年妃, 王多华, 冯亚楠, 等. 聚氨酯泡沫填充的碳纤维增强复合材料锥管吸能性能数值模拟及试验验证[J]. 中国机械工程, 2018, 29(5): 609-615. |
Gan N F, Wang D H, Feng Y N, et al. Numerical simulation and experimental verification of energy absorption performance of PU foam filled CFRP cone tubes [J]. China Mechanical Engineering, 2018, 29(5): 609-615. | |
4 | 曲杰, 胡焱松, 岳凯, 等. 硬质聚氨酯泡沫在多轴压缩试验下的力学特性研究[J]. 机械工程学报, 2017, 53(20): 89-97. |
Qu J, Hu Y S, Yue K, et al. Research on the mechanical properties of rigid polyurethane foam in the multiaxial compression experiment [J]. Journal of Mechanical Engineering, 2017, 53(20): 89-97. | |
5 | 梁志鸿, 李建, 阚前华, 等. 形状记忆聚氨酯热力耦合变形行为实验和有限元模拟[J]. 材料工程, 2019, 47(10): 133-140. |
Liang Z H, Li J, Kan Q H, et al. Experiment and finite element simulation on thermo-mechanically coupled deformation behavior of shape memory polyurethane [J]. Journal of Materials Engineering, 2019, 47(10): 133-140. | |
6 | Aboulkas A, El Harfi K, El Bouadili A, et al. Thermal degradation behaviors of polyethylene and polypropylene (I): Pyrolysis kinetics and mechanisms [J]. Energy Conversion and Management, 2009, 51(7): 1363-1369. |
7 | Özdemir B, Akar F. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry [J]. Heat and Mass Transfer, 2018, 54: 1281-1288. |
8 | Abdessalam H, Abbès B, Abbès F, et al. Prediction of acoustic properties of polyurethane foams from the macroscopic numerical simulation of foaming process [J]. Applied Acoustics, 2017, 120: 129-136. |
9 | Karimi M, Marchisio D, Laurini E, et al. Bridging the gap across scales: coupling CFD and MD/GCMC in polyurethane foam simulation [J]. Chemical Engineering Science, 2018, 178: 39-47. |
10 | Marvi-Mashhadi M, Lopes C S, Llorca J. Effect of anisotropy on the mechanical properties of polyurethane foams: an experimental and numerical study [J]. Mechanics of Materials, 2018, 124: 143 -154. |
11 | 于洋. 冰箱充型用硬质聚氨酯泡沫发泡过程数值模拟[D]. 合肥: 中国科学技术大学, 2011. |
Yu Y. Numerical simulation on refrigerator mold filling processes with rigid polyurethane foams [D]. Hefei: University of Science and Technology of China, 2011. | |
12 | 李乾坤, 柯庆镝, 田亚明, 等. 基于CFD的冰箱门体发泡过程模拟方法[J]. 家电科技, 2019, (3): 82-84+89. |
Li Q K, Ke Q D, Tian Y M, et al. Simulation method of fridge door foaming process based on CFD [J]. Journal of Appliance Science & Technology, 2019, (3): 82-84+89. | |
13 | Geier S, Winkler C, Piesche M. Numerical simulation of mold filling processes with polyurethane foams [J]. Chemical Engineering & Technology, 2009, 32(9): 1438-1447. |
14 | 王铁军, 张文君, 杨海明, 等. 便携式斯特林深冷冰箱研制[J]. 制冷学报, 2011, 32(2): 27-29+49. |
Wang T J, Zhang W J, Yang H M, et al. Development of portable Stirling cryogenic refrigerator [J]. Journal of Refrigeration, 2011, 32(2): 27-29+49. | |
15 | Bikard J, Bruchon J, Coupez T, et al. Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method [J]. Journal of Materials Science, 2005, 40(22): 5875-5881. |
16 | Yang W J, Lee G Y, Park S H. Analysis on chemical and physical behaviors of polyurethane foam for prediction of deformation of refrigerator panels [J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(12): 2041-2049. |
17 | Seo D, Youn J R. Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method [J]. Fluid Phase Equilibria, 2005, 46(17): 6482-6493. |
18 | Charles A, Harper. Handbook of Plastics and Elastomers [M]. New York: McGraw-Hill, 1975: 223. |
19 | Castro J M, Macosko C W. Kinetics and rheology of typical polyurethane reaction injection molding systems [C]// Soc. Plast. Eng. Tech. Pap. Annu. Tech. Conf. 1980: 434-438. |
20 | Rojas A J, Marciano J H, Williams R J. Rigid polyurethane foams: a model of the foaming process [J]. Polymer Engineering and Science, 1982, 22(13): 840-844. |
21 | Nian X B, Liu H, Li Y W, et al. Numerical simulation of the fluid traverses the porous media by single domain method based on UDF [J]. Procedia Engineering, 2017, 205: 3946-3953. |
22 | Anirudh A M, Thibaut M, Jorge C B, et al. A 3D moment of fluid method for simulating complex turbulent multiphase flows [J]. Computers and Fluids, 2020, 198: 104364-104371. |
23 | Yin X G, Zarikos I, Karadimitriou N K, et al. Direct simulations of two-phase flow experiments of different geometry complexities using volume-of-fluid (VOF) method [J]. Chemical Engineering Science, 2019, 195: 820-8270. |
24 | Abbassi W, Besbes S, Elhajem M, et al. Numerical simulation of free ascension and coaxial coalescence of air bubbles using the volume of fluid method (VOF) [J]. Computers and Fluids, 2018, 161: 47-59. |
25 | Aniszewski W, Ménard T, Marek M. Volume of fluid (VOF) type advection methods in two-phase flow: a comparative study [J]. Computers and Fluids, 2014, 97: 52-73. |
26 | Du W, Zhang J Z, Lu P P, et al. Advanced understanding of local wetting behavior in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method [J]. Chemical Engineering Science, 2017, 170: 378-392. |
27 | 吴海英. 冰箱门体模块的参数化设计[D]. 济南: 山东大学, 2019. |
Wu H Y. Parametric design of refrigerator door modular [D]. Jinan: Shandong University, 2019. | |
28 | 郭刚, 游飞越, 孔冬, 等. 基于数值分析的冰箱门体结构优化[J]. 电器, 2011, (S1): 58-62. |
Guo G, You F Y, Kong D, et al. Structural optimization of refrigerator door based on numerical analysis [J]. China Appliance, 2011, (S1): 58-62. | |
29 | 王怀民, 黄承成, 朱涛. 对开门冰箱门体结构优化设计[J]. 家电科技, 2015, (6): 55-57. |
Wang H M, Huang C C, Zhu T. The optimization design of the refrigeration door based on the side-by-side refrigerator [J]. Journal of Appliance Science & Technology, 2015, (6): 55-57. | |
30 | Gyu H L, Byung K P, Woo I L. Microstructure and property characterization of flexible syntactic foam for insulation material via mold casting [J]. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4(2): 169-176. |
[1] | YANG Yao, GE Shiyi, HUANG Zhengliang, SUN Jingyuan, WANG Jingdai, LIAO Zuwei, JIANG Binbo, YANG Yongrong. CFD simulation of cross flow in multi-tubular fixed-bed reactor of industrial level [J]. CIESC Journal, 2016, 67(7): 2692-2701. |
[2] | YE Sishi, TANG Qiao, QIAO Junshuai, WANG Yundong. Physical properties measurements and CFD simulations in settler of different P507-kerosene systems [J]. CIESC Journal, 2016, 67(2): 458-468. |
[3] | LIU Zuohua, SUN Ruixiang, WANG Yundong, TAO Changyuan, LIU Renlong. Chaotic mixing Intensified by rigid-flexible coupling impeller [J]. CIESC Journal, 2014, 65(9): 0-0. |
[4] | LIU Zuohua, SUN Ruixiang, WANG Yundong, TAO Changyuan, LIU Renlong. Chaotic mixing intensified by rigid-flexible coupling impeller [J]. CIESC Journal, 2014, 65(9): 3340-3349. |
[5] | PAN Ling, YANG Peishan, CAO Youhong. Simulation of secondary dehydration flow field of WFGD direct-discharged chimney with and without hotwind [J]. CIESC Journal, 2013, 64(7): 2336-2343. |
[6] | LIU Jun,ZHANG Yongfa,WANG Ying,CHEN Lei,XU Ying,ZHAO Haibin. Temperature distribution simulation and structural optimization of low-temperature combustion chamber in carbonization furnace [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2112-2119. |
[7] | YU Hongfeng1,LI Xingang1,2,LI Hong1,2. Influence of the flow in orifice pan liquid distributor on the uniformity of outflow through orifices [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 276-282. |
[8] | FANG Yu,WANG Lijun,WU Wei,LI Xi. Bionic design and optimization for monolithic catalyst chip [J]. CIESC Journal, 2012, 63(8): 2418-2424. |
[9] | LI Qiang,ZHAO Xuebing,DU Wei,LIU Dehua. CFD simulation and structural optimization in a novel airlift reversible loop bioreactor [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1690-1699. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||