1 |
Wiley B, Chen Y, McLellan J, et al. Synthesis and optical properties of silver nanobars and nanorice [J]. Nano Letters, 2007, 7(4): 1032-1036.
|
2 |
Nikonorova N A, Barmatov E B, Pebalk D A, et al. Electrical properties of nanocomposites based on comb-shaped nematic polymer and silver nanoparticles [J]. Journal of Physical Chemistry C, 2007, 111(24): 8451-8458.
|
3 |
Kamal T, Ahmad I, Khan S, et al. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers [J]. Carbohydrate Polymers, 2016, 157: 294-302.
|
4 |
Prabhu S, Poulose E K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects [J]. International Nano Letters, 2012, 2(1): 32.
|
5 |
Kwon S G, Hyeon T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides [J]. Accounts of Chemical Research, 2008, 41(12): 696-709.
|
6 |
Wang Y W, He J T, Liu C C, et al. Thermodynamics versus kinetics in nano-synthesis [J]. Angewandte Chemie International Edition, 2015, 54(7): 2022-2051.
|
7 |
Liu W, Yang T, Liu J M, et al. Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction [J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8319-8326.
|
8 |
Xiong Y J. Morphological changes in Ag nanocrystals triggered by citrate photoreduction and governed by oxidative etching [J]. Chemical Communications, 2011, 47(5): 1580-1582.
|
9 |
Park J E, Kim S, Son J, et al. Highly controlled synthesis and super-radiant photoluminescence of plasmonic cube-in-cube nanoparticles [J]. Nano Letters, 2016, 16(12): 7962-7967.
|
10 |
Logaranjan K, Raiza A J, Gopinath S C B, et al. Shape- and size- controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity [J]. Nanoscale Research Letters, 2016, 11(1): 520-529.
|
11 |
Kabashin A V, Delaporte P, Pereira A, et al. Nanofabrication with pulsed lasers [J]. Nanoscale Research Letters, 2010, 5(3): 454-463.
|
12 |
Wang H, Han Y S. Shaping particles via controlling the diffusion of building blocks [J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9742-9749.
|
13 |
Ma J Q, Li Z, Lin Q, et al. Diffusion controlling porphyrin assembled structures [J]. Chemical Engineering Journal, 2016, 283: 1051-1058.
|
14 |
Wang H, Han Y S, Li J H. Dominant role of compromise between diffusion and reaction in the formation of snow-shaped vaterite [J]. Crystal Growth & Design, 2013, 13(5): 1820-1825.
|
15 |
Yang T, Liu J, Dai J H, et al. Shaping particles by chemical diffusion and reaction [J]. CrystEngComm, 2016, 19: 72-79.
|
16 |
Yang T, Han Y S. Quantitatively relating diffusion and reaction for shaping particles [J]. Crystal Growth & Design, 2016, 16: 2850-2859.
|
17 |
Gradl J, Peukert W. Characterization of micro mixing for precipitation of nanoparticles in a T-mixer [M]// Bockhorn H, Mewes D, Peukert W, et al. Micro and Macro Mixing. Berlin, Heidelberg: Springer, 2010: 105-124.
|
18 |
Metthias L, Kind M. Influence of mixing on particle formation of fast precipitation reactions - a new coarse graining method using CFD calculations as a “measuring”instrument [J]. Chemical Engineering Research & Design, 2016, 108: 176-185.
|
19 |
Bourne J R. Mixing and the selectivity of chemical reactions [J]. Organic Process Research & Development, 2003, 7(4): 791-797.
|
20 |
Sun D K, Wang Y, Yu H Y, et al. A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection [J]. International Journal of Heat and Mass, 2018, 123: 213-226.
|
21 |
Sun D K, Pan S Y, Han Q Y, et al. Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme [J]. International Journal of Heat & Mass Transfer, 2016, 103: 821-831.
|
22 |
Yang T, Han Y S, Li J H. Manipulating dendritic structures via diffusion and reaction [J]. Chemical Engineering Science, 2015, 138: 457-464.
|
23 |
Liu W, Yang T, Liu J M, et al. Controllable synthesis of silver dendrites via an interplay of chemical diffusion and reaction [J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8319-8326.
|
24 |
Chen Y, Wang H M. Growth morphologies and mechanism of TiC in the laser surface alloyed coating on the substrate of TiAl intermetallics [J]. Journal of Alloys and Compounds, 2003, 351(1/2): 304-308.
|
25 |
Yang T, Doris S, Thaseem T, et al. The effect of mixing on silver particle morphology in flow synthesis [J]. Chemical Engineering Science, 2018, 192: 254-263.
|
26 |
Sekerka R F. A stability function for explicit evaluation of the mullins-ekerka interface stability criterion [J]. Journal of Applied Physics, 1965, 36(1): 264-268.
|
27 |
Avizienis A V, Martin-Olmos C, Sillin H O, et al. Morphological transitions from dendrites to nanowires in the electroless deposition of silver [J]. Crystal Growth & Design, 2013, 13(2): 465-469.
|
28 |
Hurle D T. Interface stability during the solidification of a stirred binary-alloy melt [J]. Journal of Crystal Growth, 1969, 5(3): 162-166.
|
29 |
Qian Y H, Humières D, Lallemand P. Diffusion simulation with a deterministic one-dimensional lattice-gas model [J]. Journal of Statistical Physics, 1992, 68(3): 563-573.
|
30 |
Humieres R. Multiple-relaxation-time lattice Boltzmann models in three dimensions [J]. Phil. Trans. R. Soc., 2002, 360(1972): 437–451.
|
31 |
Sun D K, Xing H, Dong X L, et al. An anisotropic lattice Boltzmann-phase field scheme for numerical simulations of dendritic growth with melt convection [J]. International Journal of Heat and Mass Transfer, 2019, 133: 1240-1250.
|