CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2547-2559.DOI: 10.11949/0438-1157.20201220
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
LI Xiaoyu(),XU Hongyang,DAI Min,CAI Shanshan()
Received:
2020-08-26
Revised:
2020-12-28
Online:
2021-05-05
Published:
2021-05-05
Contact:
CAI Shanshan
通讯作者:
蔡姗姗
作者简介:
李晓宇(1992—),女,硕士研究生,基金资助:
CLC Number:
LI Xiaoyu, XU Hongyang, DAI Min, CAI Shanshan. Impact of thermal dispersion on full-scale heat transfer of borehole heat exchangers[J]. CIESC Journal, 2021, 72(5): 2547-2559.
李晓宇, 徐宏阳, 代敏, 蔡姗姗. 热弥散对地埋管换热器全尺度传热的影响[J]. 化工学报, 2021, 72(5): 2547-2559.
模型 | G函数 | |
---|---|---|
ILS | (1) | |
FLS | (2) | |
MILS[ | (3) | |
MFLS[ | (4) | |
CMLS | (5) | |
CMLS-MFLS | (6) |
Table 1 G functions for predicting the wall temperature of borehole
模型 | G函数 | |
---|---|---|
ILS | (1) | |
FLS | (2) | |
MILS[ | (3) | |
MFLS[ | (4) | |
CMLS | (5) | |
CMLS-MFLS | (6) |
相关参数 | 取值 |
---|---|
单位长度热量(ql) | 28.85 W/m |
U型管热导率(λp) | 0.42 W/(m·K) |
土壤热扩散率(a) | 1.33 |
回灌材料热扩散率(ab) | 4.84 |
U型管内水流量(?) | 0.563 kg/s |
竖直钻孔长度(H) | 100 m |
U型管间距(xu) | 0.026 m |
U型管内管径(ri) | 0.016 m |
U型管外管径(ro) | 0.02 m |
渗流速度(ud) | 1×10-7 m/s |
钻孔半径(rb) | 0.065 m |
土壤初始温度(T0) | 15 |
热弥散度(αL) | 0.5 m |
Table 2 Operation parameters of single hole buried pipe heat exchanger
相关参数 | 取值 |
---|---|
单位长度热量(ql) | 28.85 W/m |
U型管热导率(λp) | 0.42 W/(m·K) |
土壤热扩散率(a) | 1.33 |
回灌材料热扩散率(ab) | 4.84 |
U型管内水流量(?) | 0.563 kg/s |
竖直钻孔长度(H) | 100 m |
U型管间距(xu) | 0.026 m |
U型管内管径(ri) | 0.016 m |
U型管外管径(ro) | 0.02 m |
渗流速度(ud) | 1×10-7 m/s |
钻孔半径(rb) | 0.065 m |
土壤初始温度(T0) | 15 |
热弥散度(αL) | 0.5 m |
1 | Wagner V, Blum P, Kübert M, et al. Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers[J]. Geothermics, 2013, 46: 22-31. |
2 | Capozza A, De Carli M, Zarrella A. Investigations on the influence of aquifers on the ground temperature in ground-source heat pump operation[J]. Applied Energy, 2013, 107: 350-363. |
3 | Habibi M, Amadeh A, Hakkaki-Fard A. A numerical study on utilizing horizontal flat-panel ground heat exchangers in ground-coupled heat pumps[J]. Renewable Energy, 2020, 147: 996-1010. |
4 | Fahs M, Graf T, Tran T V, et al. Study of the effect of thermal dispersion on internal natural convection in porous media using Fourier series[J]. Transport in Porous Media, 2020, 131(2): 537-568. |
5 | Alcaraz M, García-Gil A, Vázquez-Suñé E, et al. Advection and dispersion heat transport mechanisms in the quantification of shallow geothermal resources and associated environmental impacts[J]. Science of the Total Environment, 2016, 543: 536-546. |
6 | Jouybari N F, Lundström T S, Hellström J G I. Investigation of thermal dispersion and intra-pore turbulent heat flux in porous media[J]. International Journal of Heat and Fluid Flow, 2020, 81: 108523. |
7 | Xue Y Q, Xie C H, Li Q F. Aquifer thermal energy storage: a numerical simulation of field experiments in China[J]. Water Resources Research, 1990, 26(10): 2365-2375. |
8 | 倪龙. 同井回灌地下水源热泵源汇井运行特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
Ni L. Operation performance research on heat source/sink well of groundwater heat pump with pumping & recharging in the same well (GWHPPRSW)[D]. Harbin: Harbin Institute of Technology, 2007. | |
9 | Park B H, Bae G O, Lee K K. Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: field and numerical study[J]. Renewable Energy, 2015, 83: 270-279. |
10 | Hidalgo J J, Carrera J, Dentz M. Steady state heat transport in 3D heterogeneous porous media[J]. Advances in Water Resources, 2009, 32(8): 1206-1212. |
11 | 邓鼎兴. 地埋管地源热泵水热耦合模拟与浅层地温能适宜性评价[D]. 武汉: 中国地质大学, 2015. |
Deng D X. Thermo-hydro coupling simulation of BHE and shallow geothermal energy geological suitability assessment[D]. Wuhan: ChinaUniversity of Geosciences, 2015. | |
12 | Metzger T, Didierjean S, Maillet D. Optimal experimental estimation of thermal dispersion coefficients in porous media[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/15/16): 3341-3353. |
13 | Liu G Q, Zhou Z F, Li Z F, et al. Analysis and experimental study on thermal dispersion effect of small scale saturated porous aquifer[J]. Energy, 2014, 67: 411-421. |
14 | 刘国庆, 周志芳, 李兆峰, 等. 小尺度含水层热量运移试验研究及热弥散效应评估[J]. 岩土力学, 2015, 36(1): 171-177. |
Liu G Q, Zhou Z F, Li Z F, et al. Experimental study of heat transfer and thermal dispersion effect assessment in small scale aquifer[J]. Rock and Soil Mechanics, 2015, 36(1): 171-177. | |
15 | 李世孝. 非饱和带在水源热泵工程中的导热特性研究[D]. 沈阳: 沈阳建筑大学, 2013. |
Li S X. Research of usaturated zone's thermal characteristic in the water source heat pump engineering[D]. Shenyang: Shenyang Jianzhu University, 2013. | |
16 | 魏炜, 王明众, 潘俊, 等. 非饱和多孔介质回灌过程中热弥散度特性试验[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(5): 931-936. |
Wei W, Wang M Z, Pan J, et al. Experimental research on thermal dispersion degree properties of unsaturated porous media during recharge[J]. Journal of Shenyang Jianzhu University (Natural Science), 2013, 29(5): 931-936. | |
17 | Lu X R, Ren T S, Gong Y S. Experimental investigation of thermal dispersion in saturated soils with one-dimensional water flow[J]. Soil Science Society of America Journal, 2009, 73(6): 1912-1920. |
18 | Rau G C, Andersen M S, Acworth R I. Experimental investigation of the thermal dispersivity term and its significance in the heat transport equation for flow in sediments[J]. Water Resources Research, 2012, 48(3): W03511. |
19 | Molina-Giraldo N, Blum P, Zhu K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection[J]. International Journal of Thermal Sciences, 2011, 50(12): 2506-2513. |
20 | 陈红兵, 栾丹明, 牛浩宇, 等. 地下水渗流条件下土壤蓄热性能的数值研究[J]. 可再生能源, 2017, 35(3): 454-458. |
Chen H B, Luan D M, Niu H Y, et al. Numerical study on thermal property of underground heat exchanger under the influence of groundwater advection[J]. Renewable Energy Resources, 2017, 35(3): 454-458. | |
21 | Gelhar L W, Welty C, Rehfeldt K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974. |
22 | Zeng H Y, Diao N R, Fang Z H. A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat Transfer—Asian Research, 2002, 31(7): 558-567. |
23 | Li M, Lai A C K. New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory[J]. Energy, 2012, 38(1): 255-263. |
24 | Cui T F, Cai S S, Guo H J, et al. Full-scale model to predict borehole fluid temperature with groundwater advection[C]//Proceedings of the IGSHPA Research Track 2018. International Ground Source Heat Pump Association, 2018. |
25 | Cai S S, Li X Y, Zhang M H, et al. An analytical full-scale model to predict thermal response in boreholes with groundwater advection[J]. Applied Thermal Engineering, 2020, 168: 114828. |
26 | Goldsztein G H. Solute transport in porous media: dispersion tensor of periodic networks[J]. Applied Physics Letters, 2007, 91(5): 054102. |
27 | Cheng P, Hsu C T. Applications of van Driest's mixing length theory to transverse thermal dispersion in forced convective flow through a packed bed[J]. International Communications in Heat and Mass Transfer, 1986, 13(6): 613-625. |
28 | Hsu C T, Cheng P. Thermal dispersion in a porous medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1587-1597. |
29 | Doughty C, Hellström G, Tsang C F, et al. A dimensionless parameter approach to the thermal behavior of an aquifer thermal energy storage system[J]. Water Resources Research, 1982, 18(3): 571-587. |
30 | Molina-Giraldo N, Bayer P, Blum P. Evaluating the influence of thermal dispersion on temperature plumes from geothermal systems using analytical solutions[J]. International Journal of Thermal Sciences, 2011, 50(7): 1223-1231. |
31 | Saeid S, Al-Khoury R, Nick H M, et al. Experimental-numerical study of heat flow in deep low-enthalpy geothermal conditions[J]. Renewable Energy, 2014, 62: 716-730. |
[1] | JI Yichen, QIAN Hua, ZHENG Xiaohong. Development and validation of three-dimensional model coupling heat and seepage for predicting ground temperature distribution [J]. CIESC Journal, 2016, 67(S2): 94-99. |
[2] | ZHENG Xiaohong, QIAN Hua, LIANG Wenqing, ZHANG Lei. Impact of ground water seepage on ground temperature distribution and performance of GSHP [J]. CIESC Journal, 2014, 65(z2): 202-207. |
[3] | CHEN Zhongshan, XIE Maozhao, LIU Hongsheng. Numerical simulation of thermal dispersion in porous media with large porosity [J]. CIESC Journal, 2014, 65(3): 870-878. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 427
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||