CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 356-361.DOI: 10.11949/0438-1157.20201540
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
WANG Qianxu(),LIU Yicai(
),LIANG Heng,LI Zheng,ZHAO Xiangle
Received:
2020-11-01
Revised:
2021-01-12
Online:
2021-06-20
Published:
2021-06-20
Contact:
LIU Yicai
通讯作者:
刘益才
作者简介:
汪谦旭(1996—),男,硕士研究生,基金资助:
CLC Number:
WANG Qianxu, LIU Yicai, LIANG Heng, LI Zheng, ZHAO Xiangle. Impact of defrost falling water on defrost performance of heat exchanger[J]. CIESC Journal, 2021, 72(S1): 356-361.
汪谦旭, 刘益才, 梁恒, 李政, 赵祥乐. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361.
参 数 | 数值 |
---|---|
管材 | 紫铜 |
翅片材料 | 铝 |
管内径, Ri/mm | 8.825 |
管外径, Ro/mm | 9.525 |
管间距, d/mm | 25.4 |
管道内表面积, Ai/m2 | 1.112 |
蒸发器有效面积, Ae/m2 | 17.331 |
翅片厚度, δ/mm | 0.15 |
Table 1 Evaporator size parameters
参 数 | 数值 |
---|---|
管材 | 紫铜 |
翅片材料 | 铝 |
管内径, Ri/mm | 8.825 |
管外径, Ro/mm | 9.525 |
管间距, d/mm | 25.4 |
管道内表面积, Ai/m2 | 1.112 |
蒸发器有效面积, Ae/m2 | 17.331 |
翅片厚度, δ/mm | 0.15 |
经验常数 | 数值 |
---|---|
蒸发器和空气的自由对流传热系数, hair /(W/(m2·℃)) | 0.91 |
空气-水层的参考传热系数, aw /(W/(m2·℃)) | 25 |
蒸发器单位面积参考霜质量, mf,ref /(kg/m2) | 0.618 |
蒸发器单位面积表面最大水质量, mw,max /kg | 0.06 |
面水滴的蒸发指数, n | 1 |
Table 2 Given empirical constants
经验常数 | 数值 |
---|---|
蒸发器和空气的自由对流传热系数, hair /(W/(m2·℃)) | 0.91 |
空气-水层的参考传热系数, aw /(W/(m2·℃)) | 25 |
蒸发器单位面积参考霜质量, mf,ref /(kg/m2) | 0.618 |
蒸发器单位面积表面最大水质量, mw,max /kg | 0.06 |
面水滴的蒸发指数, n | 1 |
除霜过程 | 一区时间t1/s | 二区时间t2/s |
---|---|---|
预热阶段 | 8 | 8 |
无下落水融霜阶段 | 28 | 28 |
有下落水融霜阶段 | 31 | 42 |
蒸发阶段 | 241 | 259 |
总时长 | 308 | 337 |
Table 3 Defrost time at each stage
除霜过程 | 一区时间t1/s | 二区时间t2/s |
---|---|---|
预热阶段 | 8 | 8 |
无下落水融霜阶段 | 28 | 28 |
有下落水融霜阶段 | 31 | 42 |
蒸发阶段 | 241 | 259 |
总时长 | 308 | 337 |
1 | 王伟, 倪龙, 马最良. 空气源热泵技术与应用[M]. 北京: 中国建筑工业出版社, 2017. |
Wang W, Ni L, Ma Z L. Air Source Heat Pump Technology and Application [M]. Beijing: China Architecture & Building Press, 2017. | |
2 | Liu Z Q, Tang G F, Zhao F Y. Dynamic simulation of air-source heat pump during hot-gas defrost [J]. Applied Thermal Engineering, 2003, 23(6): 675-685. |
3 | Niu F X, Ni L, Yao Y, et al. Performance and thermal charging/discharging features of a phase change material assisted heat pump system in heating mode [J]. Applied Thermal Engineering, 2013, 58(1/2): 536-541. |
4 | Qu M L, Pan D M, Xia L, et al. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump (Ⅱ): Modeling analysis [J]. Applied Energy, 2012, 91(1): 274-280. |
5 | Song M J, Deng S M, Mao N, et al. An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil [J]. Applied Energy, 2016, 165: 371-382. |
6 | 曲明璐, 李天瑞, 樊亚男, 等. 复叠式空气源热泵蓄能除霜与常规除霜特性试验研究[J]. 制冷学报, 2017, 38(1): 34-39. |
Qu M L, Li T R, Fan Y N, et al. Experimental study on characteristics of energy storage defrosting and conventional defrosting for cascade air source heat pump [J]. Journal of Refrigeration, 2017, 38(1): 34-39. | |
7 | Song M J, Dong J K, Wu C L, et al. Improving the frosting and defrosting performance of air source heat pump units: review and outlook [J]. HKIE Transactions, 2017, 24(2): 88-98. |
8 | Wang S W, Liu Z Y. A new method for preventing HP from frosting [J]. Renewable Energy, 2005, 30(5): 753-761. |
9 | Wang F H, Wang Z H, Zheng Y X, et al. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification [J]. Applied Energy, 2015, 139: 212-219. |
10 | Wang Z H, Wang F H, Wang X K, et al. Dynamic character investigation and optimization of a novel air-source heat pump system [J]. Applied Thermal Engineering, 2017, 111: 122-133. |
11 | Kwak K M, Bai C H. A study on the performance enhancement of heat pump using electric heater under the frosting condition: heat pump under frosting condition [J]. Applied Thermal Engineering, 2010, 30(6/7): 539-543. |
12 | Liu D, Zhao F Y, Tang G F. Frosting of heat pump with heat recovery facility [J]. Renewable Energy, 2007, 32(7): 1228-1242. |
13 | Moallem E, Hong T, Cremaschi L, et al. Experimental investigation of adverse effect of frost formation on microchannel evaporators (Ⅰ): Effect of fin geometry and environmental effects [J]. International Journal of Refrigeration, 2013, 36(6): 1762-1775. |
14 | Yan W M, Li H Y, Wu Y J, et al. Performance of finned tube heat exchangers operating under frosting conditions [J]. International Journal of Heat and Mass Transfer, 2003, 46(5): 871-877. |
15 | Sommers A D, Jacobi A M. Air-side heat transfer enhancement of a refrigerator evaporator using vortex generation [J]. International Journal of Refrigeration, 2005, 28(7): 1006-1017. |
16 | Yang D K, Lee K S, Song S. Fin spacing optimization of a fin-tube heat exchanger under frosting conditions [J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2619-2625. |
17 | Park J S, Kim D R, Lee K S. Frosting behaviors and thermal performance of louvered fins with unequal louver pitch [J]. International Journal of Heat and Mass Transfer, 2016, 95: 499-505. |
18 | Yan W M, Li H Y, Tsay Y L. Thermofluid characteristics of frosted finned-tube heat exchangers [J]. International Journal of Heat and Mass Transfer, 2005, 48(15): 3073-3080. |
19 | Zhang P, Hrnjak P S. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions [J]. International Journal of Refrigeration, 2009, 32(5): 911-921. |
20 | 王洋, 江辉民, 马最良, 等. 增大蒸发器面积对延缓空气源热泵冷热水机组结霜的试验与分析[J]. 暖通空调, 2006, 36(7): 83-87. |
Wang Y, Jiang H M, Ma Z L, et al. Experiment and analysis of delaying frost of air-source heat pump water chiller-heater units by increasing the evaporator area [J]. Heating Ventilating & Air Conditioning, 2006, 36(7): 83-87. | |
21 | Okoroafor E U, Newborough M. Minimising frost growth on cold surfaces exposed to humid air by means of crosslinked hydrophilic polymeric coatings [J]. Applied Thermal Engineering, 2000, 20(8): 737-758. |
22 | Wu X M, Webb R L. Investigation of the possibility of frost release from a cold surface [J]. Experimental Thermal and Fluid Science, 2001, 24(3/4): 151-156. |
23 | Cai L, Wang R H, Hou P X, et al. Study on restraining frost growth at initial stage by hydrophobic coating and hygroscopic coating [J]. Energy and Buildings, 2011, 43(5): 1159-1163. |
24 | Liu Z L, Wang H Y, Zhang X H, et al. An experimental study on minimizing frost deposition on a cold surface under natural convection conditions by use of a novel anti-frosting paint (Ⅱ): Long-term performance, frost layer observation and mechanism analysis [J]. International Journal of Refrigeration, 2006, 29(2): 237-242. |
25 | Song M J, Mao N, Deng S M, et al. An experimental study on defrosting performance for an air source heat pump unit at different frosting evenness values with melted frost local drainage [J]. Applied Thermal Engineering, 2016, 99: 730-740. |
26 | Song M J, Chen A L, Mao N. An experimental study on defrosting performance of an air source heat pump unit with a multi-circuit outdoor coil at different frosting evenness values [J]. Applied Thermal Engineering, 2016, 94: 331-340. |
27 | Song M J, Deng S M, Xia L. A semi-empirical modeling study on the defrosting performance for an air source heat pump unit with local drainage of melted frost from its three-circuit outdoor coil [J]. Applied Energy, 2014, 136: 537-547. |
28 | Qu M L, Xia L, Deng S M, et al. Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps [J]. Building and Environment, 2010, 45(11): 2354-2361. |
29 | Shah M M. A general correlation for heat transfer during film condensation inside pipes [J]. International Journal of Heat and Mass Transfer, 1979, 22(4): 547-556. |
30 | 李刚, 田小亮. 空气源热泵系统结霜及除霜试验研究[J]. 科学技术创新, 2020, (12): 7-9. |
Li G, Tian X L. Experimental study on frost/defrost characteristics of air source heat pump system [J]. Scientific and Technological Innovation, 2020, (12): 7-9. |
[1] | Suola SHAO, Huan ZHANG, Shijun YOU, Wandong ZHENG. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel [J]. CIESC Journal, 2020, 71(8): 3480-3489. |
[2] | LI Minxia, LI Yuhan, MA Yitai, WANG Pai, WANG Feibo, ZHAN Haomiao. Comparisons of rotary and scroll compressors in small air-source heat pumps for low ambient temperature [J]. CIESC Journal, 2018, 69(S2): 379-387. |
[3] | CHEN Zidan, LUO Huilong, LIU Jinchun, CAO Zhenguo, ZHAO Xinshuai, YANG Wubiao. Analysis of heating performance of CO2 air-source heat pump in cold region [J]. CIESC Journal, 2018, 69(9): 4030-4036. |
[4] | XU Junfang, ZHAO Yaohua, QUAN Zhenhua, WANG Huifen, ZHAO Huigang, WANG Jieteng. Defrosting characteristics and energy consumption of new air-water dual source composite heat pump system [J]. CIESC Journal, 2018, 69(6): 2646-2654. |
[5] | MA Qiang, WU Xiaomin. Effect of surface wettability on frosting,defrosting and drainage [J]. CIESC Journal, 2017, 68(S1): 90-95. |
[6] | SUN Jinfei, ZHU Dongsheng, YIN Yingde, LI Xiuzhen, TU Aimin. Heating performance of single cylinder vapor injection rotary compressor applying in air-source heat pump system [J]. CIESC Journal, 2017, 68(9): 3551-3557. |
[7] | XU Junfang, ZHAO Yaohua, WANG Jieteng, ZHAO Huigang, LIANG Yuanyuan. System performance and defrosting test of new air-water double source composite heat pump system [J]. CIESC Journal, 2017, 68(11): 4301-4308. |
[8] | WANG Dong, TAO Leren, TAO Leren. Effect of humidifying amount on defrosting of air cooler in low-temperature cold storage [J]. CIESC Journal, 2014, 65(z2): 58-63. |
[9] | LI Kuining, GUO Chunlei, ZHOU Wei, CHEN Jia, HU Fei, WEI Feng. Analysis and optimization on coupling sub-cooler vapor injection air source heat pump system [J]. CIESC Journal, 2013, 64(8): 2813-2819. |
[10] | ZENG Xiangcai,LI Xuebo,WANG Nan,ZHU Dongsheng. Energy saving research progress of low-temperature open display case [J]. , 2007, 26(8): 1100-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 319
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||