CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4675-4684.DOI: 10.11949/0438-1157.20210237
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jing XIE1,2,3(),Geping SHU2,3,Geling YANG2,3,Shansong GAO2,3,Hongxue WANG2,3,Hanfeng LU1(),Yinfei CHEN1
Received:
2021-02-07
Revised:
2021-03-30
Online:
2021-09-05
Published:
2021-09-05
Contact:
Hanfeng LU
谢晶1,2,3(),舒歌平2,3,杨葛灵2,3,高山松2,3,王洪学2,3,卢晗锋1(),陈银飞1
通讯作者:
卢晗锋
作者简介:
谢晶(1981—),男,博士研究生,高级工程师,基金资助:
CLC Number:
Jing XIE, Geping SHU, Geling YANG, Shansong GAO, Hongxue WANG, Hanfeng LU, Yinfei CHEN. Mo modified Mo-Fe composite catalysts and their catalytic performance in direct coal liquefaction[J]. CIESC Journal, 2021, 72(9): 4675-4684.
谢晶, 舒歌平, 杨葛灵, 高山松, 王洪学, 卢晗锋, 陈银飞. Mo修饰的钼铁复合催化剂及其煤直接液化催化性能[J]. 化工学报, 2021, 72(9): 4675-4684.
工业分析(质量分数) /% | 岩相分析φ/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Vitrinite | Inertinite | Exinite | C | H | O | N | S |
3.89 | 5.76 | 36.30 | 48.8 | 49.2 | 0.0 | 80.70 | 4.78 | 13.19 | 0.95 | 0.38 |
Table 1 Proximate, ultimate and petrographical analyses of Shenhua Shangwan coal
工业分析(质量分数) /% | 岩相分析φ/% | 元素分析(质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | Vitrinite | Inertinite | Exinite | C | H | O | N | S |
3.89 | 5.76 | 36.30 | 48.8 | 49.2 | 0.0 | 80.70 | 4.78 | 13.19 | 0.95 | 0.38 |
密度/(g/cm3) | 芳碳率 | 供氢指数/(mg/g) | 元素分析(质量分数)/% | ||||
---|---|---|---|---|---|---|---|
C | H | S | N | O | |||
0.9905 | 0.49 | 18.88 | 89.490 | 9.718 | 0.003 | 0.021 | 0.768 |
Table 2 The properties and ultimate analysis of the recycle solvent
密度/(g/cm3) | 芳碳率 | 供氢指数/(mg/g) | 元素分析(质量分数)/% | ||||
---|---|---|---|---|---|---|---|
C | H | S | N | O | |||
0.9905 | 0.49 | 18.88 | 89.490 | 9.718 | 0.003 | 0.021 | 0.768 |
催化剂 | 平均晶粒/nm | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm | (Mo/Fe)(XRF)/% | (Mo/Fe)(EDX)/% |
---|---|---|---|---|---|---|
Fe-0 | 14.9 | 76.0 | 0.29 | 15.2 | — | — |
Mo-Fe-1 | 12.3 | 141.6 | 0.48 | 13.4 | 4.94 | 5.05 |
Mo-Fe-2 | 12.1 | 150.6 | 0.46 | 12.1 | 5.11 | 1.70 |
Mo-Fe-3 | 11.3 | 133.4 | 0.43 | 13.0 | 5.02 | 3.86 |
Mo-Fe-4 | 15.3 | 79.5 | 0.26 | 12.9 | 1.51 | 0.88 |
Mo-Fe-5 | 14.9 | 81.6 | 0.26 | 12.6 | 4.88 | 10.94 |
Table 3 Texture properties, Mo content of catalysts
催化剂 | 平均晶粒/nm | 比表面积/(m2/g) | 孔容/(cm3/g) | 平均孔径/nm | (Mo/Fe)(XRF)/% | (Mo/Fe)(EDX)/% |
---|---|---|---|---|---|---|
Fe-0 | 14.9 | 76.0 | 0.29 | 15.2 | — | — |
Mo-Fe-1 | 12.3 | 141.6 | 0.48 | 13.4 | 4.94 | 5.05 |
Mo-Fe-2 | 12.1 | 150.6 | 0.46 | 12.1 | 5.11 | 1.70 |
Mo-Fe-3 | 11.3 | 133.4 | 0.43 | 13.0 | 5.02 | 3.86 |
Mo-Fe-4 | 15.3 | 79.5 | 0.26 | 12.9 | 1.51 | 0.88 |
Mo-Fe-5 | 14.9 | 81.6 | 0.26 | 12.6 | 4.88 | 10.94 |
催化剂 | 转化率(质量分数)/% | 氢耗(质量分数)/% | 产率(质量分数) /% | |||
---|---|---|---|---|---|---|
气体 | 水 | 沥青 | 油 | |||
Fe-0 | 86.7 | 4.1 | 14.9 | 12.7 | 7.9 | 55.3 |
MoO3 | 85.1 | 3.9 | 14.4 | 12.8 | 6.4 | 55.4 |
Mo-Fe-1 | 87.9 | 4.5 | 14.0 | 13.4 | 5.3 | 59.7 |
Mo-Fe-2 | 88.0 | 4.4 | 13.8 | 13.1 | 8.0 | 57.5 |
Mo-Fe-3 | 88.2 | 4.5 | 13.9 | 13.2 | 7.2 | 58.4 |
Mo-Fe-4 | 87.9 | 4.4 | 14.2 | 13.1 | 7.7 | 57.3 |
Mo-Fe-5 | 88.2 | 4.5 | 13.8 | 13.3 | 5.3 | 60.3 |
Table 4 Results of direct coal liquefaction on catalysts
催化剂 | 转化率(质量分数)/% | 氢耗(质量分数)/% | 产率(质量分数) /% | |||
---|---|---|---|---|---|---|
气体 | 水 | 沥青 | 油 | |||
Fe-0 | 86.7 | 4.1 | 14.9 | 12.7 | 7.9 | 55.3 |
MoO3 | 85.1 | 3.9 | 14.4 | 12.8 | 6.4 | 55.4 |
Mo-Fe-1 | 87.9 | 4.5 | 14.0 | 13.4 | 5.3 | 59.7 |
Mo-Fe-2 | 88.0 | 4.4 | 13.8 | 13.1 | 8.0 | 57.5 |
Mo-Fe-3 | 88.2 | 4.5 | 13.9 | 13.2 | 7.2 | 58.4 |
Mo-Fe-4 | 87.9 | 4.4 | 14.2 | 13.1 | 7.7 | 57.3 |
Mo-Fe-5 | 88.2 | 4.5 | 13.8 | 13.3 | 5.3 | 60.3 |
1 | Ali A, Zhao C. Direct liquefaction techniques on lignite coal: a review[J]. Chinese Journal of Catalysis, 2020, 41(3): 375-389. |
2 | Vasireddy S, Morreale B, Cugini A, et al. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ. Sci., 2011, 4(2): 311-345. |
3 | 吴春来. 煤炭直接液化[M]. 北京: 化学工业出版社, 2010. |
Wu C L. Direct Coal Liquefaction[M]. Beijing: Chemical Industry Press, 2010. | |
4 | 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J]. 化工进展, 2010, 29(2): 193-197. |
Liu Z Y. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 193-197. | |
5 | Mochida I, Okuma O, Yoon S H. Chemicals from direct coal liquefaction[J]. Chemical Reviews, 2014, 114(3): 1637-1672. |
6 | Yang Z Y, Zeng P, Wang B Y, et al. Ignition characteristics of an alternative kerosene from direct coal liquefaction and its blends with conventional RP-3 jet fuel[J]. Fuel, 2021, 291: 120258. |
7 | 曹宏伟, 李月婷, 王腾达, 等. 煤直接液化油制备航空航天燃料的工艺研究[J]. 含能材料, 2020, 28(5): 376-381. |
Cao H W, Li Y T, Wang T D, et al. Process of upgrading diret coal liquefaction oil to aerospace fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 376-381. | |
8 | 舒歌平. 神华煤直接液化工艺开发历程及其意义[J]. 神华科技, 2009, 7(1): 78-82. |
Shu G P. Development history and its significance of Shenhua coal direct liquefaction[J]. Shenhua Science and Technology, 2009, 7(1): 78-82. | |
9 | Shui H F, Cai Z Y, Xu C B. Recent advances in direct coal liquefaction[J]. Energies, 2010, 3(2): 155-170. |
10 | Bacaud R. Dispersed phase catalysis: past and future, celebrating one century of industrial development[J]. Fuel, 2014, 117: 624-632. |
11 | Sheng J P, Baikenov M I, Liang X Y, et al. Rapid separation and large-scale synthesis of β-FeOOH nanospindles for direct coal liquefaction[J]. Fuel Processing Technology, 2017, 165: 80-86. |
12 | Liu B L, Li Y Z, Wu H, et al. Room-temperature solid-state preparation of CoFe2O4@Coal composites and their catalytic performance in direct coal liquefaction[J]. Catalysts, 2020, 10(5): 503. |
13 | Lokhat D, Carsky M. Direct coal liquefaction using iron carbonyl powder catalyst[J]. Chemical Engineering & Technology, 2019, 42(4): 818-826. |
14 | Kaneko T, Tazawa K, Koyama T, et al. Transformation of iron catalyst to the active phase in coal liquefaction[J]. Energy & Fuels, 1998, 12(5): 897-904. |
15 | Xie J, Lu H F, Shu G P, et al. The relationship between the microstructures and catalytic behaviors of iron-oxygen precursors during direct coal liquefaction[J]. Chinese Journal of Catalysis, 2018, 39(4): 857-866. |
16 | Mochida I, Sakanishi K, Suzuki N, et al. Progresses of coal liquefaction catalysts in Japan[J]. Catalysis Surveys from Asia, 1998, 2(1): 17-30. |
17 | 李克健, 吴秀章, 舒歌平. 煤直接液化技术在中国的发展[J]. 洁净煤技术, 2014, 20(2): 39-43. |
Li K J, Wu X Z, Shu G P. Development of direct coal liquefaction technologies in China[J]. Clean Coal Technology, 2014, 20(2): 39-43. | |
18 | Kaneko T, Derbyshire F, Makino E. Coal Liquefaction[M]∥ Ullmann’s Encyclopedia of Industrial Chemistry. Germany: Wiley-VCH, 2012. |
19 | 谢晶, 卢晗锋, 陈银飞, 等. 助剂改性FeOOH及其煤直接液化催化活性[J]. 化工学报, 2016, 67(5): 1892-1899. |
Xie J, Lu H F, Chen Y F, et al. Promoters modified FeOOH and their catalytic performances for direct coal liquefaction[J]. CIESC Journal, 2016, 67(5): 1892-1899. | |
20 | 谢晶, 舒歌平, 李克健, 等. 硅/铝改性FeOOH及其煤直接液化催化性能[J]. 煤炭转化, 2015, 38(4): 48-53, 57. |
Xie J, Shu G P, Li K J, et al. Study on Si/Al modified FeOOH and its catalytic performance of coal direct liquefaction[J]. Coal Conversion, 2015, 38(4): 48-53, 57. | |
21 | Hu H Q, Bai J F, Guo S C, et al. Coal liquefaction with in situ impregnated Fe2(MoS4)3 bimetallic catalyst[J]. Fuel, 2002, 81(11/12): 1521-1524. |
22 | 谢晶, 舒歌平, 高山松, 等. 高分散Mo基催化剂煤直接液化催化性能[J]. 高校化学工程学报, 2020, 34(5): 1182-1188. |
Xie J, Shu G P, Gao S S, et al. Catalytic performance of Mo based catalysts for direct coal liquefaction[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1182-1188. | |
23 | Wu C L, Luo Y, Zhao K, et al. Recycling molybdenum from direct coal liquefaction residue: a new approach to enhance recycling efficiency[J]. Catalysts, 2020, 10(3): 306. |
24 | 任锐, 王宗贤, 管翠诗, 等. 渣油悬浮床加氢水溶性催化剂预硫化研究(Ⅱ):钼酸盐硫化产物的XPS分析[J]. 燃料化学学报, 2005, 33(3): 299-303. |
Ren R, Wang Z X, Guan C S, et al. Study on the sulfurization of water-soluble catalysts for slurry-bed hydroprocessing of residue (Ⅱ): XPS analysis of sulfurized product of molybdate[J]. Journal of Fuel Chemistry and Technology, 2005, 33(3): 299-303. | |
25 | 吴艳, 赵鹏, 毛学锋. 煤液化条件下铁系催化剂的相变[J]. 煤炭学报, 2018, 43(5): 1448-1454. |
Wu Y, Zhao P, Mao X F. Phase transformation of iron-based catalyst at coal liquefaction[J]. Journal of China Coal Society, 2018, 43(5): 1448-1454. | |
26 | Zieliński J, Zglinicka I, Znak L, et al. Reduction of Fe2O3 with hydrogen[J]. Applied Catalysis A: General, 2010, 381(1/2): 191-196. |
27 | 尹周澜, 周桂芝, 赵秦生, 等. 钼酸铵在氢气气氛中的还原行为[J]. 中国有色金属学报, 1995, 5(1): 42-44. |
Yin Z L, Zhou G Z, Zhao Q S, et al. Reduction behavior of ammonium molybdate in hydrogen atmosphere[J]. Transactions of Nonferrous Metals Society of China, 1995, 5(1): 42-44. | |
28 | Ades H F, Companion A L, Subbaswamy K R. Molecular orbital calculations for iron catalysts[J]. Energy & Fuels, 1994, 8(1): 71-76. |
29 | 单贤根, 李克健, 章序文, 等. 神华上湾煤恒温阶段直接液化反应动力学[J].化工学报, 2017, 68(4): 1398-1406. |
Shan X G, Li K J, Zhang X W, et al. Isothermal kinetics of direct coal liquefaction for Shenhua Shangwan coal[J]. CIESC Journal, 2017, 68(4): 1398-1406. | |
30 | Li X, Hu S X, Jin L J, et al. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy & Fuels, 2008, 22(2): 1126-1129. |
31 | 高山松. 显微组分及溶剂加氢对神东煤直接液化过程的影响[D]. 上海: 华东理工大学, 2016. |
Gao S S. Study on macerals and recycle solvent hydrotreatment in the Shendong coal liquefaction process[D]. Shanghai: East China University of Science and Technology, 2016. | |
32 | 史士东. 煤加氢液化工程学基础[M]. 北京: 化学工业出版社, 2012. |
Shi S D. Engineering Fundamentals of Direct Coal Liquefaction[M]. Beijing: Chemical Industry Press, 2012. | |
33 | Niu B, Jin L J, Li Y, et al. Mechanism of hydrogen transfer and role of solvent during heating-up stage of direct coal liquefaction[J]. Fuel Processing Technology, 2017, 160: 130-135. |
34 | McMillen D F, Malhotra R, Chang S J, et al. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel, 1987, 66(12): 1611-1620. |
[1] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
[2] | SHAN Xiangen, LI Kejian, ZHANG Xuwen, WANG Hongxue, CAO Xueping, JIANG Hongbo, WENG Huixin. Isothermal kinetics of direct coal liquefaction for Shenhua Shangwan coal [J]. CIESC Journal, 2017, 68(4): 1398-1406. |
[3] | XIE Jing, LU Hanfeng, CHEN Yinfei, GAO Shansong, WANG Hongxue. Promoters modified FeOOH and their catalytic performances for direct coal liquefaction [J]. CIESC Journal, 2016, 67(5): 1892-1899. |
[4] | SUN Qiwen, WU Jianmin, ZHANG Zongsen, PANG Lifeng. Indirect coal liquefaction technology and its research progress [J]. Chemical Industry and Engineering Progree, 2013, 32(01): 1-12. |
[5] | QIAO Jianchao,WANG Jianping,SHENG Qingtao,SHEN Jun,LING Kaicheng. Advances in the preparation of aromatics from coal [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1717-1720. |
[6] | LIU Zhenyu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology [J]. , 2010, 29(2): 193-. |
[7] | XIONG Chu’an,WANG Yonggang,XU Deping. Development of rheological properties of Chinese coal-oil slurry and liquefaction residue in direct liquefaction [J]. , 2009, 28(4): 597-. |
[8] |
CHEN Ying,SONG Cunyi,CHANG Cheinchi.
Degradation of micro quantity organic compound in water using synergetic catalysis and ozonation [J]. , 2006, 25(9): 1069-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 124
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||