CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6274-6281.DOI: 10.11949/0438-1157.20211300
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Wanna ZHAO(),Chunmei ZHOU(),Yuguang JIN,Yanhui YANG
Received:
2021-09-07
Revised:
2021-11-04
Online:
2021-12-22
Published:
2021-12-05
Contact:
Chunmei ZHOU
通讯作者:
周春梅
作者简介:
赵婉娜(1996—),女,硕士研究生,基金资助:
CLC Number:
Wanna ZHAO, Chunmei ZHOU, Yuguang JIN, Yanhui YANG. Selective oxidation of 5-hydroxymethylfurfural over α-MnO2 nanowires with tunable surface oxidation state[J]. CIESC Journal, 2021, 72(12): 6274-6281.
赵婉娜, 周春梅, 靳玉广, 杨艳辉. 表面氧化态可调的α-MnO2纳米线选择性催化氧化5-羟甲基糠醛[J]. 化工学报, 2021, 72(12): 6274-6281.
Add to citation manager EndNote|Ris|BibTeX
Catalyst | Mn4+/Mn3+ | Olatt/Oads | BET/(m2/g) | Conversion①/% | Activity②/(mmol/(m2·h)) | AOS | |
---|---|---|---|---|---|---|---|
by TPR | by XPS | ||||||
MnO2-NF | 0.41 | 1.99 | 122.1 | 25.3 | 0.22 | 3.55 | 3.56 |
MnO2-NW1 | 0.48 | 2.26 | 66.4 | 24.2 | 0.47 | 3.76 | 3.72 |
MnO2-NW2 | 0.58 | 2.69 | 30.2 | 29.6 | 0.89 | 3.87 | 3.80 |
MnO2-NW3 | 0.49 | 2.66 | 28.1 | 26.4 | 0.60 | 3.78 | 3.75 |
Table 1 The surface properties and catalytic activity of the α-MnO2 catalysts
Catalyst | Mn4+/Mn3+ | Olatt/Oads | BET/(m2/g) | Conversion①/% | Activity②/(mmol/(m2·h)) | AOS | |
---|---|---|---|---|---|---|---|
by TPR | by XPS | ||||||
MnO2-NF | 0.41 | 1.99 | 122.1 | 25.3 | 0.22 | 3.55 | 3.56 |
MnO2-NW1 | 0.48 | 2.26 | 66.4 | 24.2 | 0.47 | 3.76 | 3.72 |
MnO2-NW2 | 0.58 | 2.69 | 30.2 | 29.6 | 0.89 | 3.87 | 3.80 |
MnO2-NW3 | 0.49 | 2.66 | 28.1 | 26.4 | 0.60 | 3.78 | 3.75 |
Fig.4 Product conversion and selectivity in aerobic oxidation of HMF over different MnO2 with DMF[reaction condition: 1 mmol HMF, 110°C, 0.5 h, 0.5 MPa, catalyst (50 mg), n(MnO2/HMF) =0.55]
Fig.6 Effect of surface reduction oxidation treatment on catalytic activity [reaction conditions: 1 mmol HMF, 110℃, 0.5 MPa O2,10 ml DMF, 1 h, n(MnO2/HMF) =0.55]
1 | Zhang H L, Feng Z Y, Zhu Y K, et al. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371: 1-9. |
2 | Kong X, Zhu Y F, Fang Z, et al. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chemistry, 2018, 20(16): 3657-3682. |
3 | Tan J J, Cui J L, Zhu Y L, et al. Complete aqueous hydrogenation of 5-hydroxymethylfurfural at room temperature over bimetallic RuPd/graphene catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10670-10678. |
4 | Wang H L, Yang B, Zhang Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109612. |
5 | Tsilomelekis G, Josephson T R, Nikolakis V, et al. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures[J]. ChemSusChem, 2014, 7(1): 117-126. |
6 | Lai J H, Zhou S L, Cheng F, et al. Efficient and selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic vanadium-based catalysts with air as oxidant[J]. Catalysis Letters, 2020, 150(5): 1301-1308. |
7 | Liu D, Chen B K, Li J, et al. Imidazole-functionalized polyoxometalate catalysts for the oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using atmospheric O2[J]. Inorganic Chemistry, 2021, 60(6): 3909-3916. |
8 | Wen S, Liu K, Tian Y, et al. Phosphorus-doped carbon supported vanadium phosphate oxides for catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran[J]. Processes, 2020, 8(10): 1273. |
9 | Rodikova Y, Zhizhina E. Catalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using V-containing heteropoly acid catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1): 403-415. |
10 | Lai J H, Liu K, Zhou S L, et al. Selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran over VPO catalysts under atmospheric pressure[J]. RSC Advances, 2019, 9(25): 14242-14246. |
11 | Ghosh K, Molla R A, Iqubal M A, et al. Ruthenium nanoparticles supported on N-containing mesoporous polymer catalyzed aerobic oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2, 5-diformylfuran (DFF)[J]. Applied Catalysis A: General, 2016, 520: 44-52. |
12 | Zhao D Y, Rodriguez-Padron D, Triantafyllidis K S, et al. Microwave-assisted oxidation of hydroxymethyl furfural to added-value compounds over a ruthenium-based catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3091-3102. |
13 | Nie J F, Xie J H, Liu H C. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on supported Ru catalysts[J]. Journal of Catalysis, 2013, 301: 83-91. |
14 | Wang F, Yuan Z L, Liu B, et al. Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over RuⅢ-incorporated zirconium phosphate catalyst[J]. Journal of Industrial and Engineering Chemistry, 2016, 38: 181-185. |
15 | Lin K Y A, Oh W D, Zheng M W, et al. Aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran using manganese dioxide with different crystal structures: a comparative study[J]. Journal of Colloid and Interface Science, 2021, 592: 416-429. |
16 | Chen L F, Yang W, Gui Z Y, et al. MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran[J]. Catalysis Today, 2019, 319: 105-112. |
17 | Ke Q P, Jin Y X, Ruan F, et al. Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over nitrogen-doped manganese oxide catalysts[J]. Green Chemistry, 2019, 21(16): 4313-4318. |
18 | Liu B, Zhang Z H, Lv K, et al. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2, 5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide[J]. Applied Catalysis A: General, 2014, 472: 64-71. |
19 | Liu H, Cao X J, Wei J N, et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran over Fe2O3-promoted MnO2 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7812-7822. |
20 | Neaţu F, Petrea N, Petre R, et al. Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts[J]. Catalysis Today, 2016, 278: 66-73. |
21 | 聂俊芳. 5-羟甲基糠醛选择氧化合成2, 5-呋喃二甲醛的研究[D].北京:北京大学,2013. |
Nie J F. Synthesis of 2,5-furandialdehyde by selective oxidation of 5-hydroxymethylfurfural[D]. Beijing: Peking University, 2013. | |
22 | Makwana V D, Son Y C, Howell A R, et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study[J]. Journal of Catalysis, 2002, 210(1): 46-52. |
23 | Nie J F, Liu H C. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts[J]. Journal of Catalysis, 2014, 316: 57-66. |
24 | Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21024-21036. |
25 | van Reijendam J W, Janssen M J. Polyenyl-substituted furans and thiophenes. A study of the electronic spectra(Ⅱ)[J]. Tetrahedron, 1970, 26(6): 1303-1310. |
26 | Rong S P, Zhang P Y, Liu F, et al. Engineering crystal facet of α-MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde[J]. ACS Catalysis, 2018, 8(4): 3435-3446. |
27 | Sun H, Liu Z G, Chen S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65. |
28 | Chen J H, Shen M Q, Wang X Q, et al. The influence of nonstoichiometry on LaMnO3 perovskite for catalytic NO oxidation[J]. Applied Catalysis B: Environmental, 2013, 134/135: 251-257. |
29 | Han X W, Li C Q, Liu X H, et al. Selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over MnOx-CeO2 composite catalysts[J]. Green Chemistry, 2017, 19(4): 996-1004. |
30 | Tang W X, Wu X F, Li D Y, et al. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method[J]. J. Mater. Chem. A, 2014, 2(8): 2544-2554. |
31 | Wu Y S, Lu Y, Song C J, et al. A novel redox-precipitation method for the preparation of α-MnO2 with a high surface Mn4+ concentration and its activity toward complete catalytic oxidation of o-xylene[J]. Catalysis Today, 2013, 201: 32-39. |
32 | Gui Z Y, Saravanamurugan S, Cao W R, et al. Highly selective aerobic oxidation of 5-hydroxymethyl furfural into 2,5-diformylfuran over Mn-Co binary oxides[J]. ChemistrySelect, 2017, 2(23): 6632-6639. |
33 | Chen L F, Lou F R, Cheng H Y, et al. Uniform heterostructured MnOx/MnCO3/Fe2O3 nanocomposites assembled in an ionic liquid for highly selective oxidation of 5-hydroxymethylfurfural[J]. New Journal of Chemistry, 2021, 45(27): 12050-12063. |
[1] | ZHAO Yu, SHI Qi, DONG Jinxiang. Fine adjustment of elliptical windows of ZIFs and performances of adsorptive separation of furfural/5-hydroxymethylfurfural [J]. CIESC Journal, 2021, 72(1): 555-568. |
[2] | LIU Ruixia, HE Bin, LUO Chen, DAI Fei, LI Zihang, ZHANG Ruirui. Vanadium phosphorous oxide and its catalytic application [J]. CIESC Journal, 2018, 69(4): 1261-1275. |
[3] | LI Bingjie,SHI Xiufeng,LIU Xiufang,FAN Binbin,LI Ruifeng. Preparation of hydrotalcite-supported palladium catalysts and their catalytic performances [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2661-2664. |
[4] | LIU Yanli,WANG Fuyu,WANG Chong,ZHAO Zhenbo. WO3/ZrO2 for fructose dehydration to 5-hydroxymethylfurfural as a solid acid catalyst [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 105-109. |
[5] | LI Changzhi, WANG Aiqin, ZHANG Tao. Progress of conversion of cellulose resource in ionic liquids [J]. CIESC Journal, 2013, 64(1): 182-197. |
[6] | SONG Guoqiang,SHEN Li,WANG Fan,HUANG Xianfeng,HE Qilong,CHEN Xin. A greener approach for sulfoxide synthesis with the selective oxidation of sulfides catalyzed by a strong acid cation exchange resin [J]. Chemical Industry and Engineering Progree, 2013, 32(01): 188-192. |
[7] | BING Guoqiang,WANG Jian,LI Anlian,ZHU Baodong,SONG Jun. Research progress of MoVTeNbOx catalysts in selective oxidation of propane [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1736-1740. |
[8] | SHI Ning,LIU Qiying,WANG Tiejun,ZHANG Qi,MA Longlong. Preparation of 5-hydroxymethylfurfural from glucose by catalytic dehydration [J]. Chemical Industry and Engineering Progree, 2012, 31(04 ): 792-800. |
[9] | HU Lei,SUN Yong,LIN Lu. Advances in production of 5-hydroxymethylfurfural from glucose [J]. , 2011, 30(8): 1711-. |
[10] | MIAO Yongxia,YANG Xinli,LIU Jianping. The application of Mo in catalysis [J]. , 2011, 30(11): 2433-. |
[11] | XIA Hanmei,CHEN Lifang,FANG Yunjin. Progress in highly dispersed gold nanocatalysts [J]. , 2010, 29(12): 2274-. |
[12] | ZHANG Xin,ZHANG Guiquan,LIN Tao,QI Min,GONG Ting. Advances in catalysts for liquid-phase selective oxidation of toluene [J]. , 2010, 29(10): 1890-. |
[13] | JING Qi, LÜ Xiuyang. Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water [J]. , 2008, 16(6): 890-894. |
[14] | WANG Jun,ZHNG Chunpeng,OUYANG Pingkai. Advances in production and application of 5-hydroxymethyl furfural [J]. , 2008, 27(5): 702-. |
[15] | SHI Saiquan,JIANG Pingping,SHI Runping,LU Yun. Optimized synthesis of epoxidized soybean oil without sulfuric acid [J]. , 2008, 27(5): 753-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||