CIESC Journal ›› 2022, Vol. 73 ›› Issue (5): 2158-2173.DOI: 10.11949/0438-1157.20211693
• Energy and environmental engineering • Previous Articles Next Articles
Xiqiang ZHAO1(),Jian ZHANG1,Shuang SUN1,Wenlong WANG1,Yanpeng MAO1,Jing SUN1,Jinglong LIU2,Zhanlong SONG1()
Received:
2021-11-29
Revised:
2022-01-27
Online:
2022-05-24
Published:
2022-05-05
Contact:
Zhanlong SONG
赵希强1(),张健1,孙爽1,王文龙1,毛岩鹏1,孙静1,刘景龙2,宋占龙1()
通讯作者:
宋占龙
作者简介:
赵希强(1981—),男,博士,副教授,基金资助:
CLC Number:
Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater[J]. CIESC Journal, 2022, 73(5): 2158-2173.
赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173.
Add to citation manager EndNote|Ris|BibTeX
材料 | Langmuir等温模型 | Freundlich等温模型 | Langmuir- Freundlich等温模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(10-2 L/mg) | R2 | KF/(L/mg) | 1/n | R2 | Qm/(mg/g) | Kb/(10-2 L/mg) | n | R2 | |
SA-Fe | 53.79 | 1.47 | 0.970 | 4.85 | 0.38 | 0.930 | 55.85 | 1.34 | 0.94 | 0.965 |
SA-C-Fe | 78.75 | 1.17 | 0.955 | 5.31 | 0.42 | 0.945 | 97.94 | 0.65 | 0.78 | 0.951 |
SA-C-Fe(C) | 44.31 | 1.40 | 0.961 | 3.85 | 0.39 | 0.965 | 63.65 | 0.50 | 0.66 | 0.972 |
Table1 Related parameters of Langmuir, Freundlich and Langmuir-Freundlich isotherm models
材料 | Langmuir等温模型 | Freundlich等温模型 | Langmuir- Freundlich等温模型 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Qm/(mg/g) | KL/(10-2 L/mg) | R2 | KF/(L/mg) | 1/n | R2 | Qm/(mg/g) | Kb/(10-2 L/mg) | n | R2 | |
SA-Fe | 53.79 | 1.47 | 0.970 | 4.85 | 0.38 | 0.930 | 55.85 | 1.34 | 0.94 | 0.965 |
SA-C-Fe | 78.75 | 1.17 | 0.955 | 5.31 | 0.42 | 0.945 | 97.94 | 0.65 | 0.78 | 0.951 |
SA-C-Fe(C) | 44.31 | 1.40 | 0.961 | 3.85 | 0.39 | 0.965 | 63.65 | 0.50 | 0.66 | 0.972 |
材料 | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|
Qe/(mg/L) | k1/(10-2 min-1) | R2 | Qe/(mg/L) | k2/(10-3 g/(mg·min)) | R2 | kp/(mg/(g·min0.5)) | R2 | |
SA-Fe | 16.14 | 0.19 | 0.989 | 19.26 | 0.23 | 0.991 | 0.33 | 0.924 |
SA-C-Fe | 9.07 | 0.15 | 0.907 | 21.91 | 0.87 | 0.997 | 0.190 | 0.738 |
SA-C-Fe(C) | 6.86 | 0.19 | 0.945 | 15.89 | 1.27 | 0.999 | 0.152 | 0.693 |
Table 2 Adsorption kinetic model and parameters
材料 | 准一级动力学模型 | 准二级动力学模型 | 颗粒内扩散模型 | |||||
---|---|---|---|---|---|---|---|---|
Qe/(mg/L) | k1/(10-2 min-1) | R2 | Qe/(mg/L) | k2/(10-3 g/(mg·min)) | R2 | kp/(mg/(g·min0.5)) | R2 | |
SA-Fe | 16.14 | 0.19 | 0.989 | 19.26 | 0.23 | 0.991 | 0.33 | 0.924 |
SA-C-Fe | 9.07 | 0.15 | 0.907 | 21.91 | 0.87 | 0.997 | 0.190 | 0.738 |
SA-C-Fe(C) | 6.86 | 0.19 | 0.945 | 15.89 | 1.27 | 0.999 | 0.152 | 0.693 |
性质 | SA-Fe | SA-C-Fe | SA-C-Fe(C) |
---|---|---|---|
比表面积/(m2/g) | 85.58 | 756.25 | 987.55 |
平均孔径/nm | 7.30 | 3.48 | 3.41 |
总孔容/(cm3/g) | 0.16 | 0.66 | 0.84 |
Table 3 BET characterization results of sodium alginate modified microspheres (SA-Fe, SA-C-Fe, SA-C-Fe(C))
性质 | SA-Fe | SA-C-Fe | SA-C-Fe(C) |
---|---|---|---|
比表面积/(m2/g) | 85.58 | 756.25 | 987.55 |
平均孔径/nm | 7.30 | 3.48 | 3.41 |
总孔容/(cm3/g) | 0.16 | 0.66 | 0.84 |
Element | W/% | A/% |
---|---|---|
C | 11.56 | 28.22 |
O | 14.57 | 26.70 |
Cl | 20.88 | 17.26 |
Fe | 52.99 | 27.82 |
Table 4 EDS energy spectrum analysis of the outer surface of SA-Fe magnified 50 times
Element | W/% | A/% |
---|---|---|
C | 11.56 | 28.22 |
O | 14.57 | 26.70 |
Cl | 20.88 | 17.26 |
Fe | 52.99 | 27.82 |
1 | Hu R. Pollution control and remediation of rural water resource based on urbanization perspective[J]. Environmental Technology & Innovation, 2020, 20: 101136. |
2 | Mayer B K, Baker L A, Boyer T H, et al. Total value of phosphorus recovery[J]. Environmental Science & Technology, 2016, 50(13): 6606-6620. |
3 | 周贤杰. 三峡库区次级河流富营养化模型统计与藻类生长的试验研究[D]. 重庆: 重庆大学, 2008. |
Zhou X J. Eutrophication model statistic and algae growth experiment study in tributaries to the Three Gorges reservoir[D]. Chongqing: Chongqing University, 2008. | |
4 | Bashir A, Wang L Y, Deng S Y, et al. Phosphorus release during alkaline treatment of waste activated sludge from wastewater treatment plants with Al salt enhanced phosphorus removal: speciation and mechanism clarification[J]. Science of the Total Environment, 2019, 688: 87-93. |
5 | Peng L H, Dai H L, Wu Y F, et al. A comprehensive review of phosphorus recovery from wastewater by crystallization processes[J]. Chemosphere, 2018, 197: 768-781. |
6 | 黄宣旗. 复合纳米吸附剂的制备及污水磷回收性能[D]. 广州: 暨南大学, 2020. |
Huang X Q. Preparation of composite nano-adsorbents for phosphorus recovery from wastewater[D]. Guangzhou: Jinan University, 2020. | |
7 | Amann A, Zoboli O, Krampe J, et al. Environmental impacts of phosphorus recovery from municipal wastewater[J]. Resources, Conservation and Recycling, 2018, 130: 127-139. |
8 | Yin Z C, Chen Q F, Zhao C S, et al. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite[J]. Chemosphere, 2020, 255: 127005. |
9 | He S M, McMahon K D. Microbiology of ‘Candidatus accumulibacter’ in activated sludge[J]. Microbial Biotechnology, 2011, 4(5): 603-619. |
10 | Li Y, Nan X L, Li D Y, et al. Advances in the treatment of phosphorus-containing wastewater[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647(1): 012163. |
21 | Yi X F, Sun F L, Han Z H, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(Ⅱ) and U (Ⅵ) removal[J]. Ecotoxicology and Environmental Safety, 2018, 158: 309-318. |
22 | Bai C L, Wang L, Zhu Z Y. Adsorption of Cr(Ⅲ) and Pb(Ⅱ) by graphene oxide/alginate hydrogel membrane: characterization, adsorption kinetics, isotherm and thermodynamics studies[J]. International Journal of Biological Macromolecules, 2020, 147: 898-910. |
11 | 张博, 马平安, 邓蕾, 等. 膜分离技术在水处理中的研究热点与进展[J]. 安徽化工, 2020, 46(5): 24-26, 29. |
Zhang B, Ma P A, Deng L, et al. The study focus and development of membrane separation technology for water treatment[J]. Anhui Chemical Industry, 2020, 46(5): 24-26, 29. | |
12 | 喻淑鑫. 浅谈膜分离技术及其在水处理中的应用[J]. 河北农机, 2019(8): 49. |
Yu S X. Elementary introduction to membrane separation technology and its application in water treatment[J]. Hebei Agricultural Machinery, 2019(8): 49. | |
13 | 万琼, 贾真真, 喻盈捷, 等. 吸附除磷剂的研究进展[J]. 当代化工研究, 2020(21): 4-6. |
Wan Q, Jia Z Z, Yu Y J, et al. Research progress in phosphorus-removal absorbents[J]. Modern Chemical Research, 2020(21): 4-6. | |
14 | 符明夏, 张艺, 赵秀志, 等. 海藻酸钠调控碳酸钙晶体研究综述[J]. 内江科技, 2017, 38(4): 88-89. |
Fu M X, Zhang Y, Zhao X Z, et al. A review of studies on sodium alginate regulating calcium carbonate crystals[J]. Neijiang Science & Technology, 2017, 38(4): 88-89. | |
15 | 柴雍, 王鸿儒, 姚一军, 等. 海藻酸钠改性材料的研究进展[J]. 现代化工, 2018, 38(7): 57-61, 63. |
Chai Y, Wang H R, Yao Y J, et al. Research progress on modified sodium alginate materials[J]. Modern Chemical Industry, 2018, 38(7): 57-61, 63. | |
23 | Shen W, An Q D, Xiao Z Y, et al. Alginate modified graphitic carbon nitride composite hydrogels for efficient removal of Pb(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) from water[J]. International Journal of Biological Macromolecules, 2020, 148: 1298-1306. |
24 | Bahrami F, Yu X F, Zou Y C, et al. Impregnated calcium-alginate beads as floating reactors for the remediation of nitrate-contaminated groundwater[J]. Chemical Engineering Journal, 2020, 382: 122774. |
25 | Wang L, Wang Y J, Ma F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. |
26 | Kyzas G Z, Bomis G, Kosheleva R I, et al. Nanobubbles effect on heavy metal ions adsorption by activated carbon[J]. Chemical Engineering Journal, 2019, 356: 91-97. |
27 | Huang D, Wu J Z, Wang L, et al. Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water[J]. Chemical Engineering Journal, 2019, 358: 1399-1409. |
28 | Wu Y, Zhang J, Liu Z, et al. Removal of ammonia nitrogen by biochar-alginate-jointly immobilized Chlorella vulgaris [J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2863-2869. |
29 | 刘立. 生物炭基吸附剂的制备及其对Pb2+和Cu2+的吸附性能研究[D]. 广州: 广州大学, 2019. |
Liu L. Preparation and adsorption performance of biochar-based adsorbent for Pb2+ and Cu2+ removal[D]. Guangzhou: Guangzhou University, 2019. | |
30 | 何恬叶. 稳定化纳米零价铁生物炭对水中重金属的吸附[D]. 成都: 成都理工大学, 2019. |
He T Y. Adsorption of heavy metals from aqueous using stabilized nanoscale zero-valent iron biochar[D]. Chengdu: Chengdu University of Technology, 2019. | |
31 | 于长江, 董心雨, 王苗, 等. 海藻酸钙/生物炭复合材料的制备及其对Pb(Ⅱ)的吸附性能和机制[J]. 环境科学, 2018, 39(8): 3719-3728. |
Yu C J, Dong X Y, Wang M, et al. Preparation and characterization of a calcium alginate/biochar microsphere and its adsorption characteristics and mechanisms for Pb(Ⅱ)[J]. Environmental Science, 2018, 39(8): 3719-3728. | |
32 | 杨珊. 磷酸对pH振荡的影响[J]. 应用化工, 2015, 44(10): 1840-1843. |
Yang S. Effect of phosphoric acid on pH oscillation[J]. Applied Chemical Industry, 2015, 44(10): 1840-1843. | |
16 | Yuan L, Wu Y, Gu Q S, et al. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin[J]. International Journal of Biological Macromolecules, 2017, 96: 569-577. |
17 | Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films[J]. Biomacromolecules, 2007, 8(10): 3193-3197. |
18 | 孙朝辉. 基于海藻酸钠复合改性吸附材料的制备及对重金属离子的吸附研究[D]. 西安: 长安大学, 2019. |
Sun Z H. Preparation of adsorption material based on sodium alginate composite and adsorption of heavy metal ions[D]. Xi’an: Chang’an University, 2019. | |
33 | Gu S, Fu B T, Ahn J W, et al. Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea[J]. Journal of Cleaner Production, 2021, 280: 124430. |
34 | Fu H Y, Yang Y X, Zhu R L, et al. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite[J]. Journal of Colloid and Interface Science, 2018, 530: 704-713. |
35 | Shi W M, Fu Y W, Jiang W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. |
36 | Fang L P, Liu R, Li J, et al. Magnetite/lanthanum hydroxide for phosphate sequestration and recovery from lake and the attenuation effects of sediment particles[J]. Water Research, 2018, 130: 243-254. |
19 | 赵希强, 宋占龙, 王涛, 等. 微波技术用于热解的研究进展[J]. 化工进展, 2008, 27(12): 1873-1877, 1881. |
Zhao X Q, Song Z L, Wang T, et al. Progress of pyrolysis using microwave heating technique[J]. Chemical Industry and Engineering Progress, 2008, 27(12): 1873-1877, 1881. | |
20 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
Xin Z Y, Ge L C, Feng H C, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
37 | Qiu H, Liang C, Yu J H, et al. Preferable phosphate sequestration by nano-La(Ⅲ) (hydr)oxides modified wheat straw with excellent properties in regeneration[J]. Chemical Engineering Journal, 2017, 315: 345-354. |
38 | 田中科, 王芬, 闫钊. 钢铁废水污泥吸附除磷特性[J]. 中国环境科学, 2021, 41(1): 177-184. |
Tian Z K, Wang F, Yan Z. Phosphorus adsorption characteristics by steel wastewater sludge[J]. China Environmental Science, 2021, 41(1): 177-184. | |
39 | Yang Q, Wang X L, Luo W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology, 2018, 247: 537-544. |
40 | Li M X, Liu J Y, Xu Y F, et al. Phosphate adsorption on metal oxides and metal hydroxides: a comparative review[J]. Environmental Reviews, 2016, 24(3): 319-332. |
[1] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[4] | Jiahao JIANG, Xiaole HUANG, Jiyun REN, Zhengrong ZHU, Lei DENG, Defu CHE. Qualitative and quantitative study on Pb2+ adsorption by biochar in solution [J]. CIESC Journal, 2023, 74(2): 830-842. |
[5] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
[6] | Li WAN, Deqing LIANG. Study on a biodegradable kinetics hydrate inhibitor [J]. CIESC Journal, 2022, 73(2): 894-903. |
[7] | Kun QIN, Jiale LI, Zhanghong WANG, Huiyan ZHANG. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment [J]. CIESC Journal, 2022, 73(11): 5263-5274. |
[8] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
[9] | Tingting WANG, Xi ZENG, Zhennan HAN, Fang WANG, Peng WU, Guangwen XU. Reaction characteristics and kinetics of biomass char-steam gasification in micro-fluidized bed reaction analyzer [J]. CIESC Journal, 2022, 73(1): 294-307. |
[10] | Liting HUANG, Xushen HAN, Yan JIN, Qiang MA, Jianguo YU. Isolation, identification and application of highly efficient halotolerant strains for coal chemical reverse osmosis concentrate treatment [J]. CIESC Journal, 2021, 72(9): 4881-4891. |
[11] | HUANG Zhongyi, SHI Liubin, FENG Yajun, LI Lishuo. Effect of ionic liquid pretreatment on eucalyptus char structure and its reactivity [J]. CIESC Journal, 2021, 72(4): 2267-2275. |
[12] | Yu WANG,Guangwei YU,Ruqing JIANG,Jiajia LIN,Yin WANG. Effect of particle size on phosphorus and heavy metals during the preparation of biochar from food waste biogas residue [J]. CIESC Journal, 2021, 72(10): 5344-5353. |
[13] | Guanhai MO, Shuibo XIE, Taotao ZENG, Yingjiu LIU, Pingli CAI. The efficiency and mechanism of U(Ⅵ) removal from acidic wastewater by sewage sludge-derived biochar [J]. CIESC Journal, 2020, 71(5): 2352-2362. |
[14] | Anyu LI, Shuangli LI, Bige YU, Aiying MA, Xinlan ZHOU, Jianhui XIE, Yanhong JIANG, Hua DENG. Adsorption of ammonia nitrogen and phosphorus by magnesium impregnated biochar: preparation optimization and adsorption mechanism [J]. CIESC Journal, 2020, 71(4): 1683-1695. |
[15] | ZHANG Tingting,LIU Yongjun,ZHOU Chengtao,DONG Xin,LIU Jiachen. TiO2-SnO2 coated bamboo biochar for electrochemical treatment of coking wastewater [J]. CIESC Journal, 2020, 71(12): 5793-5801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||