CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2306-2317.DOI: 10.11949/0438-1157.20220211
• Reviews and monographs • Previous Articles Next Articles
Dawei PAN(),Wei WANG(),Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU
Received:
2022-03-01
Revised:
2022-05-09
Online:
2022-06-30
Published:
2022-06-05
Contact:
Wei WANG
通讯作者:
汪伟
作者简介:
潘大伟(1991—),男,博士,副研究员,基金资助:
CLC Number:
Dawei PAN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Progress on regulation of meso-scale structures for microfluidic emulsion-template synthesis of functional microparticles[J]. CIESC Journal, 2022, 73(6): 2306-2317.
潘大伟, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 微流控乳液模板法构建功能微颗粒过程中介尺度结构定向调控的研究进展[J]. 化工学报, 2022, 73(6): 2306-2317.
Fig.1 Regulation of meso-scale structures of emulsion droplets during their trans-interfacial transfer process. (a) Schematic illustration of the trans-interfacial transfer process of an emulsion droplet[21]. (b) Schematic illustration of the trans-interfacial transfer of aqueous droplets (W1) from continuous oil phase (O1) to continuous water phase (W2), and the aggregation meso-scale structures of amphiphilic molecules at the droplet interface[21]
Fig.2 Regulation of meso-scale structures of emulsion droplets during their coalescence process. Packing structures of fluorescent PNIPAM nanoparticles on the equator (a) and the top (b) of a droplet at different temperatures[17]. (c) Packing structural change of fluorescent PNIPAM nanoparticles at droplet interface during the temperature-triggered coalescence process[17]. (d) Schematic illustration showing the metal-microneedle-induced coalescence of emulsion droplets in T-junction microchannels[18]. High-speed snapshots showing the metal-microneedle-induced coalescence between two single emulsion droplets (e), and between one single emulsion droplet and one double emulsion droplet (f)[18]
Fig.3 Regulation of meso-scale structures of emulsion droplets during their wetting-induced engulfment and dewetting-induced evolution processes. (a) Schematic illustration showing the formation of double emulsion droplets from selective wetting-induced engulfment between single emulsion droplets[20]. High-speed snapshots showing the formation process of single-core double emulsion droplets (b), multi-core double emulsion droplets (c), and triple emulsion droplets (d) via wetting-induced engulfment[20]. (e) Schematic illustration showing the dewetting-induced evolution from spherical core-shell double emulsion droplets to non-spherical acorn-like emulsion droplet[22]
Fig.4 Regulation of the meso-scale structures of microparticles via trans-interfacial mass transfer and self-assembly. Schematic illustrations showing the synthesis of solid (a) and hollow (b) PAH/PSS polyelectrolyte microparticles from W/W emulsion templates via controllable trans-interfacial mass transfer and self-assembly[23]. (c) Schematic illustrations showing the synthesis of solid Au-nanoparticle/PSS microparticles from W/W emulsion templates via controllable trans-interfacial mass transfer and self-assembly[37]. (d) SEM image of the solid nanoparticle/PSS microparticle[37]. (e) Optical microscopic snapshots showing the fabrication process of Au-nanoparticle/PSS microparticle[37]
Fig.5 Regulation of the meso-scale structures of hollow microparticles via trans-interfacial mass transfer and reaction. (a) Schematic illustrations showing the synthesis of hollow chitosan microparticles from W/O emulsion templates via trans-interfacial mass transfer and crosslinking reaction[25]. (b) — (d) Confocal laser scanning microscope images of hollow chitosan microparticles with different structures from regulation of trans-interfacial mass transfer and reaction[25]
Fig.6 Regulation of the meso-scale structures of porous microparticles via trans-interfacial mass transfer and reaction. (a) — (d) Schematic illustrations showing the synthesis of bubble-propelled porous microparticles via creation of water nanodroplets in emulsion droplets as pore-forming templates induced by trans-interfacial mass transfer[41]. (e) Schematic illustrations showing the bubble-propelled porous microparticles for efficient degradation of organic pollutants in water based on coupling mass-transfer intensification of bubble-propelled motion and photo-catalytic degradation of ZIF-8@ZnO[41]
Fig.7 Regulation of the meso-scale structures of hierarchical porous microparticles via trans-interfacial mass transfer and reaction. (a) Schematic illustrations showing the synthesis of hierarchical porous microparticles from W/O/W double emulsions via trans-interfacial mass transfer and reaction[39]. SEM images of bubble-propelled hierarchical porous microparticles[40] (b), and hierarchical porous microparticles integrated with MIL-88A nanoparticles (c)[42]
31 | Geng Y H, Ling S D, Huang J P, et al. Multiphase microfluidics: fundamentals, fabrication, and functions[J]. Small, 2020, 16(6): 1906357. |
32 | Chong Z Z, Tan S H, Gañán-Calvo A M, et al. Active droplet generation in microfluidics[J]. Lab on a Chip, 2016, 16(1): 35-58. |
33 | He F, Wang W, He X H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8743-8754. |
34 | Aronson M P, Princen H M. Contact angles associated with thin liquid films in emulsions[J]. Nature, 1980, 286(5771): 370-372. |
35 | Poulin P, Bibette J. Adhesion of water droplets in organic solvent[J]. Langmuir, 1998, 14(22): 6341-6343. |
36 | Li Z L, Wang W, Li M, et al. Facile fabrication of bubble-propelled micromotors carrying nanocatalysts for water remediation[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4562-4570. |
37 | Fu G B, Xie R, Qin J W, et al. Facile fabrication of photocatalyst-immobilized gel beads with interconnected macropores for the efficient removal of pollutants in water[J]. Industrial & Engineering Chemistry Research, 2021, 60(24): 8762-8775. |
38 | Zhang M J, Chen T, Zhang P, et al. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination[J]. Soft Matter., 2020, 16(10): 2581-2593. |
39 | Zhang M J, Wang W, Yang X L, et al. Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13758-13767. |
40 | Su Y Y, Zhang M J, Wang W, et al. Bubble-propelled hierarchical porous micromotors from evolved double emulsions[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1590-1600. |
41 | Chen L, Zhang M J, Zhang S Y, et al. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35120-35131. |
42 |
Zhang P, Li Y H, Chen L, et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Frontiers of Chemical Science and Engineering, 2022, DOI: 10.1007/s11705-022-2152-4 .
DOI |
1 | Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2): 373-384. |
2 | 苏瑶瑶, 李平凡, 汪伟, 等. 微流控液滴模板法可控构建功能微颗粒材料[J]. 化工学报, 2021, 72(1): 42-60. |
Su Y Y, Li P F, Wang W, et al. Controllable fabrication of functional microparticle materials from microfluidic droplet templates[J]. CIESC Journal, 2021, 72(1): 42-60. | |
3 | Zhang M J, Zhang P, Qiu L D, et al. Controllable microfluidic fabrication of microstructured functional materials[J]. Biomicrofluidics, 2020, 14(6): 061501. |
4 | Liu W Y, Wang W, Ju X J, et al. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification[J]. Chemical Engineering Science, 2021, 231: 116242. |
5 | Abbaspourrad A, Carroll N J, Kim S H, et al. Surface functionalized hydrophobic porous particles toward water treatment application[J]. Advanced Materials, 2013, 25(23): 3215-3221. |
6 | Zhang M J, Wang W, Xie R, et al. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates[J]. Particuology, 2016, 24: 18-31. |
7 | 汪伟, 谢锐, 巨晓洁, 等. 微流控法制备新型微颗粒功能材料研究新进展[J]. 化工学报, 2014, 65(7): 2555-2562. |
Wang W, Xie R, Ju X J, et al. Recent progress of microfluidic fabrication of novel functional microparticles[J]. CIESC Journal, 2014, 65(7): 2555-2562. | |
8 | 蔡泉威, 巨晓洁, 谢锐, 等. 微流控技术可控制备异形微颗粒功能材料的研究进展[J]. 化工学报, 2019, 70(10): 3738-3747. |
Cai Q W, Ju X J, Xie R, et al. Recent progress in controllable preparation of anisotropic microparticle functional materials based on microfluidics[J]. CIESC Journal, 2019, 70(10): 3738-3747. | |
9 | Tang M J, Wang W, Li Z L, et al. Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures[J]. Industrial & Engineering Chemistry Research, 2018, 57(29): 9430-9438. |
10 | Cai Q W, Ju X J, Chen C, et al. Fabrication and flow characteristics of monodisperse bullet-shaped microparticles with controllable structures[J]. Chemical Engineering Journal, 2019, 370: 925-937. |
11 | 褚良银, 汪伟, 巨晓洁, 等. 微流控法构建微尺度相界面及制备新型功能材料研究进展[J]. 化工进展, 2014, 33(9): 2229-2234. |
Chu L Y, Wang W, Ju X J, et al. Progress of construction of micro-scale phase interfaces and preparation of novel functional materials with microfluidics[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2229-2234. | |
12 | Li W, Zhang L Y, Ge X H, et al. Microfluidic fabrication of microparticles for biomedical applications[J]. Chemical Society Reviews, 2018, 47(15): 5646-5683. |
13 | He F, Zhang M J, Wang W, et al. Designable polymeric microparticles from droplet microfluidics for controlled drug release[J]. Advanced Materials Technologies, 2019, 4(6): 1800687. |
14 | Chen L, Yang C, Xiao Y, et al. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales[J]. Materials Today Nano, 2021, 16: 100136. |
15 | 何晓恒, 褚良银. 微流控模板法制备功能化非球形微颗粒研究新进展[J]. 化工进展, 2019, 38(9): 4109-4118. |
He X H, Chu L Y. Recent progress of fabrication of functional non-spherical microparticles from microfluidic templates[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4109-4118. | |
16 | Sun Z, Yan X X, Xiao Y, et al. Pickering emulsions stabilized by colloidal surfactants: role of solid particles[J]. Particuology, 2022, 64: 153-163. |
17 | Sun J, Wang W, He F, et al. On-chip thermo-triggered coalescence of controllable Pickering emulsion droplet pairs[J]. RSC Adv., 2016, 6: 64182-64192. |
18 | Deng N N, Sun S X, Wang W, et al. A novel surgery-like strategy for droplet coalescence in microchannels[J]. Lab on a Chip, 2013, 13(18): 3653-3657. |
19 | Deng N N, Sun J, Wang W, et al. Wetting-induced coalescence of nanoliter drops as microreactors in microfluidics[J]. ACS Applied Materials & Interfaces, 2014, 6(6): 3817-3821. |
20 | Deng N N, Wang W, Ju X J, et al. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics[J]. Lab on a Chip, 2013, 13(20): 4047-4052. |
21 | Deng N N, Wang W, Ju X J, et al. Spontaneous transfer of droplets across microfluidic laminar interfaces[J]. Lab on a Chip, 2016, 16(22): 4326-4332. |
22 | Wang W, Zhang M J, Xie R, et al. Hole-shell microparticles from controllably evolved double emulsions[J]. Angewandte Chemie, 2013, 125(31): 8242-8245. |
23 | Ma Q M, Song Y, Kim J W, et al. Affinity partitioning-induced self-assembly in aqueous two-phase systems: templating for polyelectrolyte microcapsules[J]. ACS Macro Letters, 2016, 5(6): 666-670. |
24 | Ma Q M, Yuan H, Song Y, et al. Partitioning-dependent conversion of polyelectrolyte assemblies in an aqueous two-phase system[J]. Soft Matter, 2018, 14(9): 1552-1558. |
25 | Mu X T, Li Y, Ju X J, et al. Microfluidic fabrication of structure-controlled chitosan microcapsules via interfacial cross-linking of droplet templates[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57514-57525. |
26 | Mu X T, Ju X J, Zhang L, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs[J]. Journal of Membrane Science, 2019, 590: 117275. |
27 | Peng H Y, Wang W, Xie R, et al. Mesoscale regulation of droplet templates to tailor microparticle structures and functions[J]. Particuology, 2020, 48: 74-87. |
28 | 汪伟, 谢锐, 巨晓洁, 等. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50. |
Wang W, Xie R, Ju X J, et al. Progress on control of meso-scale structures for droplet-template syntheses of particle materials[J]. Progress in Chemistry, 2018, 30(1): 44-50. | |
29 | 李洪钟. 聚焦结构、界面与多尺度问题, 开辟化学工程的新里程[J]. 过程工程学报, 2006, 6(6): 991-996. |
Li H Z. Focus attention on structure, interface and multi-scale issues to open up new mileage of chemical engineering[J]. The Chinese Journal of Process Engineering, 2006, 6(6): 991-996. | |
30 | Chao Y C, Mak S Y, Shum H C. The transformation dynamics towards equilibrium in non-equilibrium W/W/O double emulsions[J]. Applied Physics Letters, 2016, 109(18): 181601. |
[1] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[2] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
[3] | Xintong HUANG, Yuhao GENG, Hengyuan LIU, Zhuo CHEN, Jianhong XU. Research progress on new functional nanoparticles prepared by microfluidic technology [J]. CIESC Journal, 2023, 74(1): 355-364. |
[4] | Zhihao WANG, Xin SONG, Yaran YIN, Xianming ZHANG. Regulation of gelation rate on the morphology of helical fibers during microfluidic spinning [J]. CIESC Journal, 2022, 73(11): 5158-5166. |
[5] | Wenjun MA, Zhuo CHEN, Sida LING, Jingwei ZHANG, Jianhong XU. Fast and controllable preparation of core-shell microfibers by 3D printing microfluidic device [J]. CIESC Journal, 2022, 73(1): 434-440. |
[6] | Wei ZHAN, Xiyang LIU, Chunying ZHU, Youguang MA, Taotao FU. Study on the flow patterns and transition mechanism of the liquid-liquid two-phase flow in a step-emulsification microdevice with parallel microchannels [J]. CIESC Journal, 2022, 73(1): 184-193. |
[7] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[8] | LIU Yijun, CHEN Shiyi, HU Jun, ZHOU Wei, XIANG Wenguo. Review on reactors for chemical looping process [J]. CIESC Journal, 2021, 72(5): 2392-2412. |
[9] | WANG Changliang, TIAN Maocheng. Experimental research on low Reynolds number liquid-liquid two-phase flow and heat transfer characteristics in micro channels [J]. CIESC Journal, 2021, 72(3): 1322-1332. |
[10] | CHEN Zhen, LIU Jing, ZHU Chunying, FU Taotao, MA Youguang. Formation and size prediction of bubble in slurry system in T-junction microchannel [J]. CIESC Journal, 2021, 72(2): 928-936. |
[11] | LIU Langyu, ZHU Chunying, MA Youguang, FU Taotao. Progress on surfactant and interfacial transport phenomena in microchannels [J]. CIESC Journal, 2021, 72(2): 783-798. |
[12] | Chuanfu DENG,Wei WANG,Rui XIE,Xiaojie JU,Zhuang LIU,Liangyin CHU. Recent progress in scale-up integration of microfluidic droplet generators [J]. CIESC Journal, 2021, 72(12): 5965-5974. |
[13] | Wei GE, Chengxiang LI, Feiguo CHEN. Pseudo-particle modeling of multi-scale reaction-transport coupling [J]. CIESC Journal, 2021, 72(12): 5928-5935. |
[14] | Zhigang LIU,Kaiming DONG,Mingming LYU,Can JI,Yake JIANG. Study on characteristics of flow field in micro pin fin array based on Micro-PIV [J]. CIESC Journal, 2021, 72(10): 5094-5101. |
[15] | SU Yaoyao, LI Pingfan, WANG Wei, JU Xiaojie, XIE Rui, LIU Zhuang, CHU Liangyin. Controllable fabrication of functional microparticle materials from microfluidic droplet templates [J]. CIESC Journal, 2021, 72(1): 42-60. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||