CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 342-354.DOI: 10.11949/0438-1157.20221016
• Reviews and monographs • Previous Articles Next Articles
Qiuhua ZHANG(), Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU()
Received:
2022-07-25
Revised:
2022-09-13
Online:
2023-03-20
Published:
2023-01-05
Contact:
Haijia SU
通讯作者:
苏海佳
作者简介:
张秋华(1987—),男,博士研究生,工程师,zqh@brother.com.cn
基金资助:
CLC Number:
Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety[J]. CIESC Journal, 2023, 74(1): 342-354.
张秋华, 刘曼路, 王峥, 张一鸣, 苏海佳. 维生素K2的生物合成及其甲萘醌基团合成酶的功能分析[J]. 化工学报, 2023, 74(1): 342-354.
菌株 | 发酵形式 | 策略 | 产物 | 发酵水平/(mg·L-1) | 文献 |
---|---|---|---|---|---|
Bacillus licheniformis | 液体 | 卡那霉素抗性突变 | MK-7 | 0.25 mg·(g DCW)-1 | [ |
Bacillus subtilis natto | 固体 | 采用中心复合面设计研究,优化碳源和氮源 | MK-7 | 67 | [ |
Bacillus subtilis natto | 液体 | 分批补料甘油 | MK-7 | 86.48 | [ |
Escherichia sp. | 液体 | 添加甜菜碱和不同的表面活性剂 | MK-4 | 47.6 | [ |
Bacillus subtilis natto | 液体 | 采用响应面分析葡萄糖、酵母提取物和酪蛋白浓度的影响 | MK-7 | 20.5 | [ |
Bacillus amyloliquefaciens | 液体 | 室温等离子体(ARTP)诱变和碳源、氮源优化 | MK-7 | 61.3 | [ |
Bacillus subtilis natto | 液体 | 生物反应器设计有网格状时尚 PCS 结构 | MK-7 | 14.7 | [ |
Table 1 Traditional strategies for increasing vitamin K2 fermentation titer
菌株 | 发酵形式 | 策略 | 产物 | 发酵水平/(mg·L-1) | 文献 |
---|---|---|---|---|---|
Bacillus licheniformis | 液体 | 卡那霉素抗性突变 | MK-7 | 0.25 mg·(g DCW)-1 | [ |
Bacillus subtilis natto | 固体 | 采用中心复合面设计研究,优化碳源和氮源 | MK-7 | 67 | [ |
Bacillus subtilis natto | 液体 | 分批补料甘油 | MK-7 | 86.48 | [ |
Escherichia sp. | 液体 | 添加甜菜碱和不同的表面活性剂 | MK-4 | 47.6 | [ |
Bacillus subtilis natto | 液体 | 采用响应面分析葡萄糖、酵母提取物和酪蛋白浓度的影响 | MK-7 | 20.5 | [ |
Bacillus amyloliquefaciens | 液体 | 室温等离子体(ARTP)诱变和碳源、氮源优化 | MK-7 | 61.3 | [ |
Bacillus subtilis natto | 液体 | 生物反应器设计有网格状时尚 PCS 结构 | MK-7 | 14.7 | [ |
菌株 | 发酵形式 | 策略 | 产物 | 发酵水平 | 文献 |
---|---|---|---|---|---|
Escherichia coli | 液体 | UbiCA基因的缺失,过表达MenA和MenD | MK-8 | 290 mg·(g DCW)-1 | [ |
液体 | 优化MVA途径和过表达HepPPS酶 | MK-7 | 8.8 mg·L-1 | [ | |
Elizabethkingia meningoseptica | 液体 | UbiA突变,Dxr、MenA和UbiE的过表达,以及前体的补充 | MK-7 | 29.63 mg·(g DCW)-1 | [ |
Bacillus subtilis 168 | 液体 | 使用强启动子P43和过表达 crtE, MenA和MenG酶 | MK-4 | (145.0±2.8) mg·L-1 | [ |
液体 | 过表达了MEP途径的5个基因 | MK-7 | 360 mg·L-1 | [ | |
液体 | 构建了丙酮酸和丙二酰辅酶A抑制型的基因回路,联级动态调控中心代谢模块、前体IPP反应模块和产物合成模块 | MK-7 | 1549.6 mg·L-1 | [ |
Table 2 Genetic engineering strategies for increasing vitamin K2 fermentation titer
菌株 | 发酵形式 | 策略 | 产物 | 发酵水平 | 文献 |
---|---|---|---|---|---|
Escherichia coli | 液体 | UbiCA基因的缺失,过表达MenA和MenD | MK-8 | 290 mg·(g DCW)-1 | [ |
液体 | 优化MVA途径和过表达HepPPS酶 | MK-7 | 8.8 mg·L-1 | [ | |
Elizabethkingia meningoseptica | 液体 | UbiA突变,Dxr、MenA和UbiE的过表达,以及前体的补充 | MK-7 | 29.63 mg·(g DCW)-1 | [ |
Bacillus subtilis 168 | 液体 | 使用强启动子P43和过表达 crtE, MenA和MenG酶 | MK-4 | (145.0±2.8) mg·L-1 | [ |
液体 | 过表达了MEP途径的5个基因 | MK-7 | 360 mg·L-1 | [ | |
液体 | 构建了丙酮酸和丙二酰辅酶A抑制型的基因回路,联级动态调控中心代谢模块、前体IPP反应模块和产物合成模块 | MK-7 | 1549.6 mg·L-1 | [ |
名称 | 酶编号 | 蛋白大小/kDa | 底物 | (kcat/Km)/(L·s-1·μmol-1) | 辅因子 | 二级结构图 |
---|---|---|---|---|---|---|
MenF | 5.4.4.2 | 52.812 | — | — | — | |
MenD | 2.2.1.9 | 64.092 | — | — | Mg2+ | |
MenH | 4.2.99.20 | 27.128 | — | — | — | |
MenC | 4.2.1.113 | 41.629 | (1R,6R)-6-羟基-2-琥珀环己烷基-2,4-二烯-1-羧酸酯 | 2 | — | |
MenE | 6.2.1.26 | 50.185 | 2-邻琥珀酰苯甲酸 | 0.77 | Mg2+ | |
MenB | 4.1.3.36 | 31.633 | 4-(2'-羧苯基)-4- 氧代丁酰-CoA | 24 | HCO3- | |
MenI | 3.1.2.28 | 14.945 | 1-羟基-2-萘甲酰基-CoA | 1.85 | — | |
MenA | 2.5.1.74 | 33.838 | — | — | — | |
MenG | 2.1.1.163 | 27.128 | — | — | — |
Table 3 Enzymological information on Menase
名称 | 酶编号 | 蛋白大小/kDa | 底物 | (kcat/Km)/(L·s-1·μmol-1) | 辅因子 | 二级结构图 |
---|---|---|---|---|---|---|
MenF | 5.4.4.2 | 52.812 | — | — | — | |
MenD | 2.2.1.9 | 64.092 | — | — | Mg2+ | |
MenH | 4.2.99.20 | 27.128 | — | — | — | |
MenC | 4.2.1.113 | 41.629 | (1R,6R)-6-羟基-2-琥珀环己烷基-2,4-二烯-1-羧酸酯 | 2 | — | |
MenE | 6.2.1.26 | 50.185 | 2-邻琥珀酰苯甲酸 | 0.77 | Mg2+ | |
MenB | 4.1.3.36 | 31.633 | 4-(2'-羧苯基)-4- 氧代丁酰-CoA | 24 | HCO3- | |
MenI | 3.1.2.28 | 14.945 | 1-羟基-2-萘甲酰基-CoA | 1.85 | — | |
MenA | 2.5.1.74 | 33.838 | — | — | — | |
MenG | 2.1.1.163 | 27.128 | — | — | — |
Men酶 | 片段 大小/bp | 甘油消耗 速率 | 生物量 | 酶活 | MK-7产量 |
---|---|---|---|---|---|
MenA | 936 | +++ | + | +++ | +++ |
MenB | 819 | — | — | — | — |
MenC | 1116 | ++ | ++ | + | + |
MenD | 1737 | + | + | ++ | |
MenE | 1464 | + | + | ++ | + |
MenG | 702 | — | — | — | — |
MenH | 825 | * | ++ | + | * |
Table 4 Effect of Menase on MK-7 expression
Men酶 | 片段 大小/bp | 甘油消耗 速率 | 生物量 | 酶活 | MK-7产量 |
---|---|---|---|---|---|
MenA | 936 | +++ | + | +++ | +++ |
MenB | 819 | — | — | — | — |
MenC | 1116 | ++ | ++ | + | + |
MenD | 1737 | + | + | ++ | |
MenE | 1464 | + | + | ++ | + |
MenG | 702 | — | — | — | — |
MenH | 825 | * | ++ | + | * |
1 | 董润锜. 维生素K2的生物学效应及临床意义的研究进展[J]. 河南医学研究, 2021, 30(18): 3451-3454. |
Dong R Q. Research progress on the biological effects and clinical significance of vitamin K2[J]. Henan Medical Research, 2021, 30(18): 3451-3454. | |
2 | 李树壮. 补钙还需补维生素K2[J]. 家庭健康(医学科普), 2020(2): 18. |
Li S Z. Vitamin K2 is also needed for calcium supplementation [J]. Family Health, 2020(2): 18. | |
3 | 李月, 刘艳, 路更, 等. 维生素K对CKD-MBD骨代谢异常以及血管钙化的治疗及作用机制[J]. 中国骨质疏松杂志, 2022, 28(2): 308-312. |
Li Y, Liu Y, Lu G, et al. Therapeutical action and mechanism of vitamin K in chronic kidney disease-mineral and bone disorder and vascular calcification[J]. Chinese Journal of Osteoporosis, 2022, 28(2): 308-312. | |
4 | 朱进伟, 桂王艳, 张安源, 等. 维生素K2的相关合成研究及前景展望[J]. 中国抗生素杂志, 2020, 45(7): 646-654. |
Zhu J W, Gui W Y, Zhang A Y, et al. Synthetic research and prospects of vitamin K2[J]. Chinese Journal of Antibiotics, 2020, 45(7): 646-654. | |
5 | Blume S W, Curtis J R. Medical costs of osteoporosis in the elderly medicare population[J]. Osteoporosis International, 2011, 22(6): 1835-1844. |
6 | Ren L J, Peng C, Hu X C, et al. Microbial production of vitamin K2: current status and future prospects[J]. Biotechnology Advances, 2020, 39: 107453. |
7 | 原攀红, 吕雪芹, 刘延峰, 等. 调控质膜稳态提高枯草芽孢杆菌积累四烯甲萘醌MK-4[J]. 食品与发酵工业, 2021, 47(18): 1-7. |
Yuan P H, Lyu X Q, Liu Y F, et al. Regulation of plasma membrane homeostasis to increase the accumulation of menaquinone-4 in Bacillus subtilis [J]. Food and Fermentation Industries, 2021, 47(18): 1-7. | |
8 | 尹贵超, 段逸飞,王成,等. 维生素K 2(MK-7)高产菌株及其筛选方法和生产维生素K2(MK-7)的方法: 113755404A[P]. 2021-12-07. |
Yin G C, Duan Y F, Wang C, et al. High production strain of vitamin K2 (MK-7) and its screening method and production method: 113755404A[P]. 2021-12-07. | |
9 | 尉鸿飞. 黄杆菌胞内维生素K2的分离纯化与理化特性研究[D]. 合肥: 中国科学技术大学, 2018. |
Yu H F. Isolation, purification and physicochemical characterization of vitamin K2 from Flavobacterium [D]. Hefei: University of Science and Technology of China, 2018. | |
10 | 刘珍. 纳豆芽孢杆菌产维生素K2(MK-7)的工艺优化及比较代谢组学分析[D]. 无锡: 江南大学, 2021. |
Liu Z. Process optimization of vitamin K2(MK-7) by Bacillus subtilis natto and comparative metabolomics analysis[D]. Wuxi: Jiangnan University, 2021. | |
11 | Kong M K, Lee P C. Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production[J]. Biotechnology and Bioengineering, 2011, 108(8): 1997-2002. |
12 | Liu Y, Ding X M, Xue Z L, et al. Site-directed mutagenesis of UbiA to promote menaquinone biosynthesis in Elizabethkingia meningoseptica [J]. Process Biochemistry, 2017, 58: 186-192. |
13 | Liu Y, Yang Z M, Xue Z L, et al. Influence of site-directed mutagenesis of UbiA, overexpression of dxr, menA and ubiE, and supplementation with precursors on menaquinone production in Elizabethkingia meningoseptica [J]. Process Biochemistry, 2018, 68: 64-72. |
14 | Ma Y W, McClure D D, Somerville M V, et al. Metabolic engineering of the MEP pathway in Bacillus subtilis for increased biosynthesis of menaquinone-7[J]. ACS Synthetic Biology, 2019, 8(7): 1620-1630. |
15 | 梁媛. 糖酵解途径和转运系统的改造对大肠杆菌发酵L-苏氨酸的影响[D]. 天津: 天津科技大学, 2014. |
Liang Y. Effect of manipulation of glycolysis and transport system on L-threonine production in Escherichia coli [D]. Tianjin: Tianjin University of Science & Technology, 2014. | |
16 | 谢冲. 利用大肠杆菌莽草酸途径生物合成苯酚、酪醇和羟基酪醇的研究[D]. 北京: 北京化工大学, 2019. |
Xie C. Biosynthesis of phenol, tyrosol and hydroxytyrosol using the E . coli shikimate pathway[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
17 | 顾洋. 重构枯草芽孢杆菌糖转运途径及中心代谢网络高效合成N-乙酰氨基葡萄糖[D]. 无锡: 江南大学, 2020. |
Gu Y. Rewiring the glucose transportation pathway and central metabolic pathway for overproduction of N-acetylglucosamine in Bacillus subtilis [D]. Wuxi: Jiangnan University, 2020. | |
18 | 严为留. 发酵法生产维生素K2的研究[D]. 无锡: 江南大学, 2014. |
Yan W L. Study on the fermentation of vitamin K2[D]. Wuxi: Jiangnan University, 2014. | |
19 | Goodman S R, Marrs B L, Narconis R J, et al. Isolation and description of a menaquinone mutant from Bacillus licheniformis [J]. Journal of Bacteriology, 1976, 125(1): 282-289. |
20 | Berenjian A, Mahanama R, Talbot A, et al. Efficient media for high menaquinone-7 production: response surface methodology approach[J]. New Biotechnology, 2011, 28(6): 665-672. |
21 | Berenjian A, Mahanama R, Talbot A, et al. Advances in menaquinone-7 production by Bacillus subtilis natto: fed-batch glycerol addition[J]. American Journal of Biochemistry and Biotechnology, 2012, 8(2): 105-110. |
22 | Yan L, Zheng Z M, Qiu H W, et al. Surfactant supplementation to enhance the production of vitamin K-2 metabolites in shake flask cultures using Escherichia sp. mutant FM3-1709[J]. Food Technology and Biotechnology, 2014, 52(3): 269-275. |
23 | Mahdinia E, Demirci A, Berenjian A. Enhanced vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors by optimization of glucose-based medium[J]. Current Pharmaceutical Biotechnology, 2018, 19(11): 917-924. |
24 | Xu J Z, Zhang W G. Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance[J]. Journal of Zhejiang University-Science B, 2017, 18(6): 462-473. |
25 | Mahdinia E, Demirci A, Berenjian A. Biofilm reactors as a promising method for vitamin K (menaquinone-7) production[J]. Applied Microbiology and Biotechnology, 2019, 103(14): 5583-5592. |
26 | Berenjian A, Mahanama R, Talbot A, et al. Designing of an intensification process for biosynthesis and recovery of menaquinone-7[J]. Applied Biochemistry and Biotechnology, 2014, 172(3): 1347-1357. |
27 | 张晨阳, 武耀康, 徐显皓, 等. 工业微生物代谢网络模型的研究进展及应用[J]. 生物工程学报, 2021, 37(3): 860-873. |
Zhang C Y, Wu Y K, Xu X H, et al. Current status and future perspectives of metabolic network models of industrial microorganisms[J]. Chinese Journal of Biotechnology, 2021, 37(3): 860-873. | |
28 | 曹燕亭, 刘延峰, 李江华, 等. 基于细胞亚群调控提升生物合成效率的研究进展[J]. 生物技术通报, 2020, 36(4): 19-25. |
Cao Y T, Liu Y F, Li J H, et al. Advances of improving the efficiency of chemical biosynthesis based on cell subpopulation regulation[J]. Biotechnology Bulletin, 2020, 36(4): 19-25. | |
29 | 刘艳, 杨自名, 薛正莲, 等. menA过表达菌株构建及两阶段pH控制促进VK2合成[J]. 食品与生物技术学报, 2019, 38(12): 31-38. |
Liu Y, Yang Z M, Xue Z L, et al. Construction of menA overexpressing strain and two-stage pH control promoting VK2 synthesis [J]. Chinese Journal of Food and Biotechnology, 2019, 38(12): 31-38. | |
30 | Gao Q X, Chen H, Wang W Z, et al. Menaquinone-7 production in engineered Escherichia coli [J]. World Journal of Microbiology & Biotechnology, 2020, 36(9): 132. |
31 | Yuan P H, Cui S X, Liu Y F, et al. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis [J]. Enzyme and Microbial Technology, 2020, 141: 109652. |
32 | Chen T C, Xia H Z, Cui S X, et al. Combinatorial methylerythritol phosphate pathway engineering and process optimization for increased menaquinone-7 synthesis in Bacillus subtilis [J]. Journal of Microbiology and Biotechnology, 2020, 30(5): 762-769. |
33 | 徐显皓. 枯草芽孢杆菌中心代谢级联调控回路的设计、构建与应用[D]. 无锡: 江南大学, 2021. |
Xu X H. Design, construction and application of the genetic circuits for the layered regulation of central metabolic in Bacillus subtilis [D]. Wuxi: Jiangnan University, 2021. | |
34 | 李梦莹, 吕雪芹, 刘延峰, 等. 代谢工程改造大肠杆菌合成L-组氨酸[J]. 食品与发酵工业, 2021, 47(12): 1-12. |
Li M Y, Lyu X Q, Liu Y F, et al. Metabolic engineering of Escherichia coli for increased synthesis of L-histidine[J]. Food and Fermentation Industries, 2021, 47(12): 1-12. | |
35 | 张晓龙, 王晨芸, 刘延峰, 等. 基于合成生物技术构建高效生物制造系统的研究进展[J]. 合成生物学, 2021, 2(6): 863-875. |
Zhang X L, Wang C Y, Liu Y F, et al. Research progress of constructing efficient biomanufacturing system based on synthetic biotechnology[J]. Synthetic Biology Journal, 2021, 2(6): 863-875. | |
36 | 钱蕾, 刘延峰, 李江华, 等. 适应性进化和改造质粒稳定性促进枯草芽孢杆菌合成N-乙酰神经氨酸[J]. 食品与发酵工业, 2021, 47(5): 1-6. |
Qian L, Liu Y F, Li J H, et al. Regulating the synthesis of N-acetylneuraminic acid based on adaptive evolution and plasmid stability modification in Bacillus subtilis [J]. Food and Fermentation Industries, 2021, 47(5): 1-6. | |
37 | 陈泰驰. 枯草芽孢杆菌代谢调控及过程优化发酵生产七烯甲萘醌[D]. 无锡: 江南大学, 2020. |
Chen T C. Genetic engineering and process optimization of Bacillus subtilis for menaquinone-7 production[D]. Wuxi: Jiangnan University, 2020. | |
38 | 徐建中, 王颖妤, 严为留, 等. 维生素K2合成途径中主要酶对MK-7产量的影响[J]. 生物技术通报, 2016, 32(11): 248-254. |
Xu J Z, Wang Y Y, Yan W L, et al. Effects of major enzymes in the biosynthetic pathway of vitamin K2 on MK-7 production[J]. Biotechnology Bulletin, 2016, 32(11): 248-254. | |
39 | 杨绍梅. 枯草芽孢杆菌的模块化路径工程设计促进甲萘醌-7的合成[D]. 天津: 天津大学, 2019. |
Yang S M. Modular pathway engineering of Bacillus subtilis to promote the biosynthesis of menaquinone-7[D]. Tianjin: Tianjin University, 2019. | |
40 | Liu L, Gallagher J, Arevalo E D, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nature Plants, 2021, 7(3): 287-294. |
41 | Grützner R, Martin P, Horn C, et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns[J]. Plant Communications, 2020, 2(2): 100135. |
42 | McCarty N S, Graham A E, Studená L, et al. Multiplexed CRISPR technologies for gene editing and transcriptional regulation[J]. Nature Communications, 2020, 11: 1281. |
43 | Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels[J]. Biotechnology Advances, 2017, 35(8): 1032-1039. |
44 | Dahl R H, Zhang F Z, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11): 1039-1046. |
45 | Kalia V C. Quorum sensing inhibitors: an overview[J]. Biotechnology Advances, 2013, 31(2): 224-245. |
46 | Xu J Z, Yan W L, Zhang W G. Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering[J]. RSC Advances, 2017, 7(45): 28527-28534. |
47 | Jun D, Richardson-Sanchez T, Mahey A, et al. Introduction of the menaquinone biosynthetic pathway into Rhodobacter sphaeroides and de novo synthesis of menaquinone for incorporation into heterologously expressed integral membrane proteins[J]. ACS Synthetic Biology, 2020, 9(5): 1190-1200. |
48 | Liao C Y, Ayansola H, Ma Y B, et al. Advances in enhanced menaquinone-7 production from Bacillus subtilis [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 695526. |
49 | Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals[J]. Nature Communications, 2019, 10: 4976. |
50 | Yang S M, Cao Y X, Sun L M, et al. Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7[J]. ACS Synthetic Biology, 2019, 8(1): 70-81. |
51 | Cui S X, Lv X Q, Wu Y K, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis [J]. ACS Synthetic Biology, 2019, 8(8): 1826-1837. |
52 | Wu J, Li W, Zhao S G, et al. Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis [J]. Microbial Cell Factories, 2021, 20(1): 113. |
53 | Qin X, Taber H W. T Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications ubtilis menp1 promoter[J]. Journal of Bacteriology, 1996, 178(3): 705-713. |
54 | Sridharan S, Howard N, Kerbarh O, et al. Crystal structure of Escherichia coli enterobactin-specific isochorismate synthase (EntC) bound to its reaction product isochorismate: implications for the enzyme mechanism and differential activity of chorismate-utilizing enzymes[J]. Journal of Molecular Biology, 2010, 397(1): 290-300. |
55 | Kolappan S, Zwahlen J, Zhou R, et al. Lysine 190 is the catalytic base in MenF, the menaquinone-specific isochorismate synthase from Escherichia coli: implications for an enzyme family[J]. Biochemistry, 2007, 46(4): 946-953. |
56 | Dawson A, Fyfe P K, Hunter W N. Specificity and reactivity in menaquinone biosynthesis: the structure of Escherichia coli MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase)[J]. Journal of Molecular Biology, 2008, 384(5): 1353-1368. |
57 | Jiang M, Chen X L, Guo Z F, et al. Identification and characterization of (1R, 6R)-2-succinyl-6-hydroxy-2, 4-cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli [J]. Biochemistry, 2008, 47(11): 3426-3434. |
58 | Thompson T B, Garrett J B, Taylor E A, et al. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate[J]. Biochemistry, 2000, 39(35): 10662-10676. |
59 | Taylor Ringia E A, Garrett J B, Thoden J B, et al. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis [J]. Biochemistry, 2004, 43(1): 224-229. |
60 | Palmer D R, Garrett J B, Sharma V, et al. Unexpected divergence of enzyme function and sequence: “N-acylamino acid racemase” is o-succinylbenzoate synthase[J]. Biochemistry, 1999, 38(14): 4252-4258. |
61 | Klenchin V A, Taylor Ringia E A, Gerlt J A, et al. Evolution of enzymatic activity in the enolase superfamily: structural and mutagenic studies of the mechanism of the reaction catalyzed by o-succinylbenzoate synthase from Escherichia coli [J]. Biochemistry, 2003, 42(49): 14427-14433. |
62 | Matarlo J S, Evans C E, Sharma I, et al. Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents[J]. Biochemistry, 2015, 54(42): 6514-6524. |
63 | Sun Y R, Song H G, Li J, et al. Structural basis of the induced-fit mechanism of 1, 4-dihydroxy-2-naphthoyl coenzyme A synthase from the crotonase fold superfamily[J]. PLoS One, 2013, 8(4): e63095. |
64 | Truglio J J, Theis K, Feng Y G, et al. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis[J]. The Journal of Biological Chemistry, 2003, 278(43): 42352-42360. |
65 | Smith H B, Li T L, Liao M K, et al. Listeria monocytogenes MenI encodes a DHNA-CoA thioesterase necessary for menaquinone biosynthesis, cytosolic survival, and virulence[J]. Infection and Immunity, 2021, 89(5): e00792-e00720. |
66 | Murad A M, Brognaro H, Falke S, et al. Structure and activity of the DHNA coenzyme-A thioesterase from Staphylococcus aureus providing insights for innovative drug development[J]. Scientific Reports, 2022, 12: 4313. |
67 | Suvarna K, Stevenson D, Meganathan R, et al. Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli [J]. Journal of Bacteriology, 1998, 180(10): 2782-2787. |
68 | Hu L X, Feng J J, Wu J, et al. Identification of six important amino acid residues of MenA from Bacillus subtilis natto for enzyme activity and formation of menaquinone[J]. Enzyme and Microbial Technology, 2020, 138: 109583. |
69 | Johnston J M, Arcus V L, Morton C J, et al. Crystal structure of a putative methyltransferase from Mycobacterium tuberculosis: misannotation of a genome clarified by protein structural analysis[J]. Journal of Bacteriology, 2003, 185(14): 4057-4065. |
70 | Sakuragi Y, Zybailov B, Shen G Z, et al. Insertional inactivation of the MenG gene, encoding 2-phytyl-1, 4-naphthoquinone methyltransferase of Synechocystis sp. PCC 6803, results in the incorporation of 2-phytyl-1, 4-naphthoquinone into the A(1) site and alteration of the equilibrium constant between A(1) and F(X) in photosystem I[J]. Biochemistry, 2002, 41(1): 394-405. |
71 | Xiang M J, Kang Q, Zhang D W. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell[J]. Synthetic and Systems Biotechnology, 2020, 5(4): 245-251. |
72 | 李宏彪, 梁晓琳, 周景文. 酿酒酵母基因编辑技术研究进展[J]. 生物工程学报, 2021, 37(3): 950-965. |
Li H B, Liang X L, Zhou J W. Progress in gene editing technologies for Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology, 2021, 37(3): 950-965. |
[1] | Chunhua YIN, Siyu PENG, Leizhen MA, Haiyang ZHANG, Hai YAN. Biosynthesis of ZnO nanoparticles and their application in lipase immobilization [J]. CIESC Journal, 2020, 71(5): 2248-2255. |
[2] | HUANG Jinbiao1,SHANG Long’an2. Advance in biosynthesis of polyhydroxyalkanoate [J]. , 2011, 30(9): 2041-. |
[3] | LI Jinjuan,ZHAO Lin,TAN Xin,HUANG Yu,LIU Tingyi. Synthesis and characterization of PHA produced by acclimated activated sludge from acidified starchy wastewater [J]. , 2011, 30(7): 1618-. |
[4] | WANG Haisheng,ZHANG Xiaoxia,LU Yuan,RUAN Zhiyong,XING Xinhui,JIANG Ruibo. Recent research progress of bacterial violacein [J]. , 2008, 27(3): 315-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 442
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 673
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||