CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2743-2754.DOI: 10.11949/0438-1157.20241287
• Process system engineering • Previous Articles Next Articles
Pengwei LIAO1(
), Qinghui LIU2, An PAN2, Jiayue WANG2, Xiaogui FU2, Siyu YANG1(
), Hao YU1
Received:2024-11-12
Revised:2024-12-16
Online:2025-07-09
Published:2025-06-25
Contact:
Siyu YANG
廖鹏伟1(
), 刘庆辉2, 潘安2, 王嘉岳2, 符小贵2, 杨思宇1(
), 余皓1
通讯作者:
杨思宇
作者简介:廖鹏伟(2000—),男,硕士研究生,202220123569@mail.scut.edu.cn
基金资助:CLC Number:
Pengwei LIAO, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Siyu YANG, Hao YU. Wind power hydrogen production systems considering uncertainty: multi-time scale operation strategy[J]. CIESC Journal, 2025, 76(6): 2743-2754.
廖鹏伟, 刘庆辉, 潘安, 王嘉岳, 符小贵, 杨思宇, 余皓. 考虑不确定性的风电制氢系统:多时间尺度运行策略[J]. 化工学报, 2025, 76(6): 2743-2754.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 项目名称 | 地点 | 签约时间 | 详情 |
|---|---|---|---|---|
| 1 | 辽宁省朝阳县风光储氢一体化项目 | 辽宁 | 2022/1 | 规划建设300 MW级压缩空气储能电站,配套建设900 MW风电、300 MW光伏、2×500 m3/h(标准工况)的电解水制氢项目 |
| 2 | 兴安盟废弃矿区风光储氢一体化项目 | 内蒙古 | 2022/2 | 规划建设900 MW风电、300 MW光伏、200 MW/800 MWh压缩空气储能与2×500 m³/h(标准工况)电解水制氢项目 |
| 3 | 宣化风储氢综合智慧能源示范项目 | 河北 | 2022/4 | 装机容量200 W的风电、30 MW/60 MWh储能站及500 m3/h(标准工况)制氢站 |
| 4 | 鄂尔多斯市乌审旗风光融合绿氢化工示范项目二期、乌兰察布10×104 t/a风光制氢一体化示范项目 | 内蒙古 | 2022/12 | 鄂尔多斯市并网型项目:400 MW风电,制氢2×104 t/a 乌兰察布并网型项目:2546 MW(风电1742 MW、光伏804 MW),制氢10×104 t/a |
| 5 | 乌兰察布兴和县风光发电制氢合成氨一体化项目 | 内蒙古 | 2023/1 | 规划建设350 MW风电、150 MW光电,年制氢25700 t |
| 6 | 国际氢能冶金示范区新能源制氢联产无碳燃料项目 | 内蒙古 | 2023/1 | 规划建设30×104 t/a新能源制氢、120×104 t绿氨及配套5000 MW风电绿色冶金化工产业示范区 |
| 7 | 张家口风氢一体化源网荷储综合示范工程项目 | 河北 | 2023/7 | 规划建设200 MW风电、2.4×104 m3/h(标准工况)制氢站、配套储氢装置及40 MW氢燃料电池发电系统。80%风电用于绿氢生产,年产绿氢约1×104 t |
Table 1 China renewable energy hydrogen projects
| 序号 | 项目名称 | 地点 | 签约时间 | 详情 |
|---|---|---|---|---|
| 1 | 辽宁省朝阳县风光储氢一体化项目 | 辽宁 | 2022/1 | 规划建设300 MW级压缩空气储能电站,配套建设900 MW风电、300 MW光伏、2×500 m3/h(标准工况)的电解水制氢项目 |
| 2 | 兴安盟废弃矿区风光储氢一体化项目 | 内蒙古 | 2022/2 | 规划建设900 MW风电、300 MW光伏、200 MW/800 MWh压缩空气储能与2×500 m³/h(标准工况)电解水制氢项目 |
| 3 | 宣化风储氢综合智慧能源示范项目 | 河北 | 2022/4 | 装机容量200 W的风电、30 MW/60 MWh储能站及500 m3/h(标准工况)制氢站 |
| 4 | 鄂尔多斯市乌审旗风光融合绿氢化工示范项目二期、乌兰察布10×104 t/a风光制氢一体化示范项目 | 内蒙古 | 2022/12 | 鄂尔多斯市并网型项目:400 MW风电,制氢2×104 t/a 乌兰察布并网型项目:2546 MW(风电1742 MW、光伏804 MW),制氢10×104 t/a |
| 5 | 乌兰察布兴和县风光发电制氢合成氨一体化项目 | 内蒙古 | 2023/1 | 规划建设350 MW风电、150 MW光电,年制氢25700 t |
| 6 | 国际氢能冶金示范区新能源制氢联产无碳燃料项目 | 内蒙古 | 2023/1 | 规划建设30×104 t/a新能源制氢、120×104 t绿氨及配套5000 MW风电绿色冶金化工产业示范区 |
| 7 | 张家口风氢一体化源网荷储综合示范工程项目 | 河北 | 2023/7 | 规划建设200 MW风电、2.4×104 m3/h(标准工况)制氢站、配套储氢装置及40 MW氢燃料电池发电系统。80%风电用于绿氢生产,年产绿氢约1×104 t |
| C&CG 算法 |
|---|
1 输入初始不确定度集 μ,设 LB =-∞, UB =+∞ 2 求解主要问题,得到最优解( x, α, y ),令 UB = α 3 将主问题得到的 x 代入子问题 4 解决子问题 5 令 6 如果 7 跳到步骤2,将步骤4中得到的最新不确定变量 μ 代入主要问题 8 否则 9 输出最优解 x, y 10 结束 |
Table 2 C&CG algorithm process
| C&CG 算法 |
|---|
1 输入初始不确定度集 μ,设 LB =-∞, UB =+∞ 2 求解主要问题,得到最优解( x, α, y ),令 UB = α 3 将主问题得到的 x 代入子问题 4 解决子问题 5 令 6 如果 7 跳到步骤2,将步骤4中得到的最新不确定变量 μ 代入主要问题 8 否则 9 输出最优解 x, y 10 结束 |
| 场景 | 顺序分配策略 | 本文模型 |
|---|---|---|
| 1 | 17 | 0 |
| 2 | 15 | 0 |
Table 3 Comparison of the number of starts and stops of different strategies
| 场景 | 顺序分配策略 | 本文模型 |
|---|---|---|
| 1 | 17 | 0 |
| 2 | 15 | 0 |
| [1] | The european green deal-european commission[EB/OL]. [2024-05-13]. . |
| [2] | The long-term strategy of the United States. Pathways to net-zero greenhouse gas emissions by 2050[EB/OL]. [2024-05-13]. . |
| [3] | Renewable energy pillar[EB/OL]. [2024-05-13]. . |
| [4] | 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2024-05-13]. . |
| Outline of the 14th Five-Year Plan for national economic and social development of the People's Republic of China and the long-term objectives for 2035[EB/OL]. [2024-05-13]. . | |
| [5] | Gao D, Jiang D F, Liu P, et al. An integrated energy storage system based on hydrogen storage: process configuration and case studies with wind power[J]. Energy, 2014, 66: 332-341. |
| [6] | Energy storage grand challenge roadmap[EB/OL]. [2024-05-13]. . |
| [7] | 国际氢能网——国际氢能行业专业全媒体平台[EB/OL]. [2024-05-13]. . |
| International Hydrogen Energy Network: International professional all-media platform for the hydrogen energy industry[EB/OL]. [2024-05-13]. . | |
| [8] | 11个可再生能源制氢储备项目!宁夏可再生能源发展“十四五”规划发布![EB/OL]. [2024-05-23]. . |
| Renewable energy hydrogen production and storage projects! Ningxia's “14th Five-Year Plan” for renewable energy development released![EB/OL]. [2024-05-23] . | |
| [9] | 我国已有几十个氢能项目落地, 附重点项目介绍, 煤制氢和电解水制氢有何区别[EB/OL]. [2024-05-23]. . |
| Dozens of hydrogen energy projects have been implemented in my country, with an introduction to key projects. What is the difference between coal-to-hydrogen and water electrolysis[EB/OL]. [2024-05-23]. . | |
| [10] | 葛书强, 杨中桂, 白洁, 等. 可再生能源制氢技术及其主要设备发展现状及展望[J]. 太原理工大学学报, 2024, 55(5): 759-787. |
| Ge S Q, Yang Z G, Bai J, et al. Development status and prospect of hydrogen production technology by renewable energy and its main equipment[J]. Journal of Taiyuan University of Technology, 2024, 55(5): 759-787. | |
| [11] | 中国能源建设股份有限公司. 推动能源绿色转型 中国能建一批项目签约开工[EB/OL]. [2024-05-23]. . |
| China Energy Engineering Corporation Limited. Promoting green energy transformation China. Energy Engineering Corporation has signed contracts to start construction on a number of projects[EB/OL]. [2024-05-23]. . | |
| [12] | 国家电力投资集团有限公司. 河北公司宣化风储氢综合智慧能源示范项目首台风机并网成功[EB/OL]. [2024-05-23]. . |
| System Dynamics-State Power Investment Corporation. The first wind turbine of Hebei Company's Xuanhua wind and hydrogen storage integrated smart energy demonstration project was successfully connected to the grid[EB/OL]. [2024-05-23]. . | |
| [13] | Mabrak H, Elmazouzi S, Takky D, et al. Hydrogen production by water electrolysis: review[C]//2023 12th International Conference on Renewable Energy Research and Applications (ICRERA). Oshawa, ON, Canada: IEEE, 2023: 372-380. |
| [14] | Abdel Haleem A, Huyan J, Nagasawa K, et al. Effects of operation and shutdown parameters and electrode materials on the reverse current phenomenon in alkaline water analyzers[J]. Journal of Power Sources, 2022, 535: 231454. |
| [15] | Kojima H, Nagasawa K, Todoroki N, et al. Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(12): 4572-4593. |
| [16] | Ehlers J C, Feidenhans'l A A, Therkildsen K T, et al. Affordable green hydrogen from alkaline water electrolysis: key research needs from an industrial perspective[J]. ACS Energy Letters, 2023, 8(3): 1502-1509. |
| [17] | Shi X F, Qian Y, Yang S Y. Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7097-7110. |
| [18] | Varela C, Mostafa M, Zondervan E. Modeling alkaline water electrolysis for power-to-x applications: a scheduling approach[J]. International Journal of Hydrogen Energy, 2021, 46(14): 9303-9313. |
| [19] | 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109. |
| Yuan T J, Wan Z, Wang J J, et al. The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1): 101-109. | |
| [20] | Yang J, Su C Q. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty[J]. Energy, 2021, 223: 120043. |
| [21] | 万志. 新能源制氢系统运行控制策略研究[D]. 大连: 大连理工大学, 2021. |
| Wan Z. Study on operation control strategy of hydrogen production system based on new energy[D]. Dalian: Dalian University of Technology, 2021. | |
| [22] | Cheng Z P, Jia D Q, Li Z W, et al. Multi-time scale energy management of microgrid considering the uncertainties in both supply and demand[J]. Energy Reports, 2022, 8: 10372-10384. |
| [23] | Zheng Y, Huang C J, Tan J, et al. Off-grid wind/hydrogen systems with multi-electrolyzers: optimized operational strategies[J]. Energy Conversion and Management, 2023, 295: 117622. |
| [24] | Zhang C, Wang J Y, Ren Z B, et al. Wind-powered 250 kW electrolyzer for dynamic hydrogen production: a pilot study[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34550-34564. |
| [25] | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
| Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
| [26] | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
| Ji X, Zhou B X, He G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
| [27] | 邱一苇, 吉旭, 朱文聪, 等. 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望[J]. 中国电机工程学报, 2023, 43(18): 6934-6955. |
| Qiu Y W, Ji X, Zhu W C, et al. Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies[J]. Proceedings of the CSEE, 2023, 43(18): 6934-6955. | |
| [28] | Ogumerem G S, Pistikopoulos E N. Parametric optimization and control for a smart proton exchange membrane water electrolysis (PEMWE) system[J]. Journal of Process Control, 2020, 91: 37-49. |
| [29] | Pistikopoulos E N, Diangelakis N A, Oberdieck R, et al. PAROC—an integrated framework and software platform for the optimisation and advanced model-based control of process systems[J]. Chemical Engineering Science, 2015, 136: 115-138. |
| [30] | Ulleberg Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
| [31] | Lofberg J. YALMIP: a toolbox for modeling and optimization in MATLAB[C]//2004 IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2004: 284-289. |
| [1] | Biqiang LIU, Haishan CAO. Adsorption measurement method based on flow calibration and its error analysis [J]. CIESC Journal, 2022, 73(4): 1597-1605. |
| [2] | Wanpeng ZHENG, Xiaoyong GAO, Guiyao ZHU, Xin ZUO. Research progress on crude oil operation optimization [J]. CIESC Journal, 2021, 72(11): 5481-5501. |
| [3] | Hongwei GUAN, Lingjian YE, Feifan SHEN, De GU, Zhihuan SONG. Dynamic real-time optimization for gold cyanidation leaching process using economic model predictive control [J]. CIESC Journal, 2020, 71(3): 1122-1130. |
| [4] | Chenying LI, Linlin LIU, Lei ZHANG, Siwen GU, Jian DU. Controllable heat exchanger network synthesis under uncertainty via multi-scenario optimization [J]. CIESC Journal, 2020, 71(3): 1154-1162. |
| [5] | Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397. |
| [6] | HUANG Weiqing, TAN Guiping, QIAN Yu. Computing and application analysis of maximum tolerable delay index for chemical reactor systems [J]. CIESC Journal, 2018, 69(3): 974-981. |
| [7] | WANG Kuanglei, XIE Lei, CHEN Junghui, SU Hongye, WANG Jingdai. Simultaneous design and control of polyethylene process based on uncertainty Kriging model [J]. CIESC Journal, 2018, 69(3): 936-942. |
| [8] | JIANG Hao, CHEN Bingzhen. Research progress of chemical process stability analysis [J]. CIESC Journal, 2018, 69(1): 76-87. |
| [9] | ZHAO Yongming, LUO Yiqing, YUAN Xigang. An optimization model for tactical decision-making level and uncertainty risk management in petroleum supply chain [J]. CIESC Journal, 2017, 68(2): 746-758. |
| [10] | ZHANG Yuanyuan, WANG Yonggang, TIAN Yajun, XIE Kechang. Techno-economic analysis method of coal to olefins process with market uncertainty [J]. CIESC Journal, 2017, 68(11): 4288-4300. |
| [11] | HANG Chenzhe, MA Guoyuan, XU Dinghua, XU Shuxue, ZHANG Haiyun, TENG Junheng. Metrological characteristics of water-enthalpy method cooling capacity source [J]. CIESC Journal, 2016, 67(S2): 100-106. |
| [12] | YANG Feifei, HUANG Xiankun, KE Shaoyong, LIU Yongzhong. Optimization of hybrid power systems based on period partitioning properties and life cycle cost of battery [J]. CIESC Journal, 2016, 67(12): 5112-5121. |
| [13] | TIAN Ye, DONG Hongguang, ZOU Xiong, LI Shuangshuang, WANG Bing. Chemical production planning and scheduling integration under demand uncertainty [J]. CIESC Journal, 2014, 65(9): 0-0. |
| [14] | Liu Chang, Sun Li, He Gaohong, Gai Limei. Boiler system design based on the approach of stochastic programming under uncertain steam demand and equipment failure [J]. CIESC Journal, 2014, 65(9): 0-0. |
| [15] | LIU Chang, SUN Li, HE Gaohong, GAI Limei. Boiler system design based on stochastic programming under uncertain steam demand and equipment failure [J]. CIESC Journal, 2014, 65(9): 3512-3518. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||