CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6314-6327.DOI: 10.11949/0438-1157.20250536
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yifan PEI(
), Yuanliang XIE, Yi ZHOU, Xuelu XIONG(
)
Received:2025-05-13
Revised:2025-07-29
Online:2026-01-23
Published:2025-12-31
Contact:
Xuelu XIONG
通讯作者:
熊雪露
作者简介:裴依凡(2000—),男,硕士研究生,122108010963@njust.edu.cn
基金资助:CLC Number:
Yifan PEI, Yuanliang XIE, Yi ZHOU, Xuelu XIONG. Transport characteristics of reactive scalar fields in a planar jet under the influence of reversible elementary reactions[J]. CIESC Journal, 2025, 76(12): 6314-6327.
裴依凡, 谢远亮, 周毅, 熊雪露. 可逆基元反应影响下平面射流中反应性标量场输运特性[J]. 化工学报, 2025, 76(12): 6314-6327.
Add to citation manager EndNote|Ris|BibTeX
| 0 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 0.1 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 1 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 10 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
Table 1 Numerical parameters and node configuration of the reactive planar jet
| 0 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 0.1 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 1 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
| 10 | 2000 | 0.71 | 0.1 | 2 | 1 | 30 | 23 | 8 | 701 | 659 | 120 |
Fig.14 Statistics of conditionally averaged correlation coefficients among terms in the scalar transport equation for species C under Lagrange coordinates at x/d=25
| [1] | Broadwell J E, Lutz A E. A turbulent jet chemical reaction model: NO x production in jet flames[J]. Combustion and Flame, 1998, 114(3/4): 319-335. |
| [2] | Swaminathan N, Mahalingam S, Kerr R. Direct numerical simulation of reversible and irreversible chemical reactions in turbulent nonpremixed flames[C]//31st Aerospace Sciences Meeting. AIAA, 1993: 103. |
| [3] | Watanabe T, Sakai Y, Nagata K, et al. Reactive scalar field near the turbulent/non-turbulent interface in a planar jet with a second-order chemical reaction[J]. Physics of Fluids, 2014, 26(10): 105111. |
| [4] | Watanabe T, Sakai Y, Nagata K, et al. LES-Lagrangian particle method for turbulent reactive flows based on the approximate deconvolution model and mixing model[J]. Journal of Computational Physics, 2015, 294: 127-148. |
| [5] | Komori S, Hunt J C R, Kanzaki T, et al. The effects of turbulent mixing on the correlation between two species and on concentration fluctuations in non-premixed reacting flows[J]. Journal of Fluid Mechanics, 1991, 228: 629-659. |
| [6] | Watanabe T, Sakai Y, Nagata K, et al. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction[J]. Experiments in Fluids, 2012, 53(5): 1369-1383. |
| [7] | 李岩, 田阿慧, 周毅. 反应性双射流中标量输运和化学反应特性[J]. 化工学报, 2022, 73(5): 1947-1963. |
| Li Y, Tian A H, Zhou Y. Characteristics of scalar transport and chemical reaction in reactive dual jets[J]. CIESC Journal, 2022, 73(5): 1947-1963. | |
| [8] | 曹晴晴, 李岩, 张欣羡, 等. 反应性射流中湍流/非湍流界面附近标量输运特性[J]. 气体物理, 2024, 9(1): 1-11. |
| Cao Q Q, Li Y, Zhang X X, et al. Scalar transport characteristics near the turbulent/non-turbulent interface in a reactive jet flow[J]. Physics of Gases, 2024, 9(1): 1-11. | |
| [9] | Das S, Garrick S C. The effects of turbulence on nanoparticle growth in turbulent reacting jets[J]. Physics of Fluids, 2010, 22(10): 103303. |
| [10] | Wu W W, Wang L P, Calzavarini E, et al. Reactive scalars in incompressible turbulence with strongly out of equilibrium chemistry[J]. Journal of Fluid Mechanics, 2022, 938: A19. |
| [11] | Zhang K, Shen Y Z, Duwig C. Identification of heat transfer intensification mechanism by reversible N2O4 decomposition using direct numerical simulation[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121946. |
| [12] | Wu W W, Calzavarini E, Schmitt F G, et al. Fluctuations and correlations of reactive scalars near chemical equilibrium in incompressible turbulence[J]. Physical Review Fluids, 2020, 5(8): 084608. |
| [13] | Yao R, Zhang K, Jafari S, et al. Numerical investigation on reversible reactive flow inside ribbed channels with different inclined angles[J]. International Journal of Heat and Mass Transfer, 2025, 242: 126820. |
| [14] | Shea J R. A chemical reaction in a turbulent jet[J]. Journal of Fluid Mechanics, 1977, 81(2): 317-333. |
| [15] | Komen E, Shams A, Camilo L, et al. Quasi-DNS capabilities of OpenFOAM for different mesh types[J]. Computers & Fluids, 2014, 96: 87-104. |
| [16] | Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations[J]. Journal of Computational Physics, 2003, 186(2): 652-665. |
| [17] | Zhou Y, Nagata K, Sakai Y, et al. Dual-plane turbulent jets and their non-Gaussian velocity fluctuations[J]. Physical Review Fluids, 2018, 3(12): 124604. |
| [18] | Stanley S A, Sarkar S, Mellado J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation[J]. Journal of Fluid Mechanics, 2002, 450: 377-407. |
| [19] | Gutmark E, Wygnanski I. The planar turbulent jet[J]. Journal of Fluid Mechanics, 1976, 73(3): 465-495. |
| [20] | Watanabe T, Sakai Y, Nagata K, et al. Experimental study on the reaction rate of a second-order chemical reaction in a planar liquid jet[J]. AIChE Journal, 2014, 60(11): 3969-3988. |
| [21] | Watanabe T, Sakai Y, Nagata K, et al. Enstrophy and passive scalar transport near the turbulent/non-turbulent interface in a turbulent planar jet flow[J]. Physics of Fluids, 2014, 26(10): 105103. |
| [22] | da Silva C B, Hunt J C R, Eames I, et al. Interfacial layers between regions of different turbulence intensity[J]. Annual Review of Fluid Mechanics, 2014, 46: 567-590. |
| [23] | Dimotakis P E. The mixing transition in turbulent flows[J]. Journal of Fluid Mechanics, 2000, 409(1): 69-98. |
| [24] | Bilger R. Turbulent diffusion flames[J]. Annual Review of Fluid Mechanics, 1989, 21: 101-135. |
| [25] | Zhang X X, Watanabe T, Nagata K. Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers[J]. Physical Review Fluids, 2018, 3(9): 094605. |
| [26] | Bisset D K, Hunt J C R, Rogers M M. The turbulent/non-turbulent interface bounding a far wake[J]. Journal of Fluid Mechanics, 2002, 451: 383-410. |
| [27] | Hayashi M, Watanabe T, Nagata K. The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet[J]. Physics of Fluids, 2021, 33(5): 055126. |
| [28] | Xie Y L, Zhang X X, Xiong X L, et al. Temporal evolution of the turbulence interface of a turbulent plane jet[J]. Journal of Fluid Mechanics, 2024, 1001: A39. |
| [29] | Holzner M, Lüthi B. Laminar superlayer at the turbulence boundary[J]. Physical Review Letters, 2011, 106(13): 134503. |
| [30] | Watanabe T, Sakai Y, Nagata K, et al. Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers[J]. Physics of Fluids, 2015, 27(8): 085109. |
| [1] | Yan LI, Ahui TIAN, Yi ZHOU. Characteristics of scalar transport and chemical reaction in reactive dual jets [J]. CIESC Journal, 2022, 73(5): 1947-1963. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||