[1] |
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick Jr W J, Hallett J P, Leak D J, Liotta1C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials [J]. Science, 2006, 311(5760): 484-489
|
[2] |
Xu Guihong(徐桂红), Zhao Xinqing(赵心清), Li Ning(李宁), Bai Fengwu(白凤武). Improvement of acetic acid tolerance of self-flocculating yeast by zinc supplementation [J]. CIESC Journal, 2012, 63(6): 1823-1829
|
[3] |
Ding M Z, Wang X, Yang Y, Yuan Y J. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae [J]. Omics:a Journal of Integrative Biology, 2011, 15(10): 647-653
|
[4] |
Li Hongxing(李洪兴), Zhang Xiaoran(张笑然), Shen Yu(沈煜), Dong Yongsheng(董永胜), Bao Xiaoming(鲍晓明). Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose-a review [J]. Chinese Journal of Biotechnology(生物工程学报), 2009, 25(9): 1321-1328
|
[5] |
Zheng D Q, Wu X C, Wang P M, Chi X Q, Tao X L, Li P, Jiang X H, Zhao Y H. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(3): 415-422
|
[6] |
Zhao Xinqing(赵心清), Zhang Mingming(张明明), Xu Guihong(徐桂红), Xu Jianren(许建韧), Bai Fengwu(白凤武). Advances in functional genomics studies underlying acetic acid tolerance of Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology(生物工程学报), 2014, 30(3): 368-380
|
[7] |
Gaida S M, Al-Hinai M A, Indurthi D C, Nicolaou1 S A, Papoutsakis E T. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress [J]. Nucleic Acids Research, 2013, 41(18): 8726-8737
|
[8] |
Graves T, Narendranath N V, Dawson K, Power R. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash [J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(6): 469-474
|
[9] |
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2011, 10(1): 2-13
|
[10] |
Rodríguez-Manzaneque M T, Tamarit J, BellÍ G, Ros J, Herrero E. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes [J]. Molecular Biology of the Cell, 2002, 13(4): 1109-1121
|
[11] |
Pérez Gallardo R V, Briones L S, Díaz Pérez A L, Gutiérrez S, Rodríguez Zavala J S, Campos García J. Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system [J]. FEMS Yeast Research, 2013, 13(8): 804-819
|
[12] |
Kim I, Kim Y, Yoon H. Glutathione reductase from Oryza sativa increases acquired tolerance to abiotic stresses in a genetically modified Saccharomyces cerevisiae strain [J]. Journal of Microbiology and Biotechnology, 2012, 22(11): 1557-1567
|
[13] |
Rodríguez-Manzaneque M T, Ros J, Cabiscol E, Sorribas A, Herrero E. Grx5 Glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 1999, 19(12): 8180-8190
|
[14] |
Oh Y, Hong S, Yeon J, Cha M, Kim I. Interaction between Saccharomyces cerevisiae glutaredoxin 5 and SPT10 and their in vivo functions [J]. Free Radical Biology and Medicine, 2012, 52(9): 1519-1530
|
[15] |
He L Y, Zhao X Q, Bai F W. Engineering industrial Saccharomyces cerevisiae strain with the FLO1-derivative gene isolated from the flocculating yeast SPSC01 for constitutive flocculation and fuel ethanol production [J]. Applied Energy, 2012, 100: 33-40
|
[16] |
Nedjoud G, Fadila K, Mouna A, Zohra G, Sana G. Effect of zinc on growth, metabolism and activity of antioxidant enzymes in the yeast [J]. Global Journal of Biodiversity Science and Management, 2013, 3(2): 243-248
|
[17] |
Zhang Jina(张吉娜), He Xiuping(何秀萍), Guo Xuena(郭雪娜), Liu Nan(刘楠), Zhang Borun(张博润). Genetically modified industrial breing yeast with high-glutathione and low-diacetyl production [J]. Chinese Journal of Biotechnology(生物工程学报), 2006, 21(6): 942-946
|
[18] |
Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate [J]. Antonie van Leeuwenhoek, 1990, 58(3): 209-217
|
[19] |
Wang X, Li B Z, Ding M Z, Zhang W W, Yuan Y J. Metabolomic analysis reveals key metabolites related to the rapid adaptation of Saccharomyce cerevisiae to multiple inhibitors of furfural, acetic acid, and phenol [J]. OMICS, 2013, 17(3): 150-159
|
[20] |
Zancan P, Sola-Penna M. Trehalose and glycerol stabilize and renature yeast inorganic pyrophosphatase inactivated by very high temperatures [J]. Archives of Biochemistry and Biophysics, 2005, 444: 52-60
|