[1] LI B, FAN Y, SUN Z, et al. Effects of high-frequency pulsed electrical field and operating parameters on dehydration of SAGD produced ultra-heavy oil[J]. Powder Technol., 2017, 316:338-344.
[2] LI B, SUN Z, WANG Z, et al. Effects of high-frequency and high-voltage pulsed electric field parameters on water chain formation[J]. J. Electrostat., 2016, 80:22-29.
[3] URDAHL O, NORDSTAD K, BERRY P, et al. Development of a new, compact electrostatic coalescer concept[J]. SPE Production and Operations, 2001, 16:4-8.
[4] FORDEDAL H, SCHILDBERG Y, SJOBLOM J, et al. Crude oil emulsions in high electric fields as studied by dielectric spectroscopy. Influence of interaction between commercial and indigenous surfactants[J]. Colloids Surf. A Physicochem. Eng. Asp., 1996, 106:33-47.
[5] TSOURIS C, SHIN W T, YIACOUMI S, et al. Pumping, spraying, and mixing of fluids by electric fields[J]. Can. J. Chem. Eng., 1998, 76(3):589-599.
[6] 李彬, 孙治谦, 王振波, 等. 高频高压脉冲电场作用下水链形成与消散行为的实验研究[J]. 高校化学工程学报, 2015, 29(6):1333-1339. LI B, SUN Z Q, WANG Z B, et al. The experimental study of water chain formation and dissipation in high-frequency and high-voltage pulsed electric field[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6):1333-1339.
[7] VIVACQUA V, GHADIRI M, ABDULLAH A M, et al. Compact electrocoalescer with conical frustum electrodes:US62425808[P]. 2016-11-24.
[8] MOHAMMED R A, BAILE A I, LUCHHAM P F, et al. Dewatering of crude oil emulsions[J]. Colloids and Surfaces A, 1994, 83(3):261-271.
[9] SUN D, JONG S C, DUAN X D, et al. Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred-and-packed columns[J]. Colloids and Surfaces A, 1999, 150:69-75.
[10] TAYLOR S E. Theory and practice of electrically-enhanced phase separation of water-in-oil emulsion[J]. Trans. IChemE, 1996, 74(5):526-540.
[11] 樊玉新, 李彬, 孙治谦, 等. 高频脉冲电场下无机盐及电场参数对水滴成链特性的影响研究[J]. 高校化学工程学报, 2016, 30(2):364-370. FAN Y X, LI B, SUN Z Q, et al. Impact of salts and high-frequency pulsed electric field parameters on water chain formation[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2):364-370.
[12] 樊玉新, 李彬, 孙治谦, 等. 无机盐浓度及种类对电脱水过程水滴极化的影响[J]. 化工学报, 2016, 67(8):3297-3303. FAN Y X, LI B, SUN Z Q, et al. Effect of salt concentration and type on polarization and deformation of water droplet during electric dehydration[J]. CIESC Journal, 2016, 67(8):3297-3303.
[13] HIRATO T, KOYAMA K, TANAKE T. Demulsification of water-in-oil emulsion by an electrostatic coalescence method[J]. Mater. Trans. JIM, 1991, 32(3):257-263.
[14] BAILES P J, FREESTONE D, SAMS G W. Pulsed DC fields for electrostatic coalescence of water-in-oil emulsions[J]. The Chem. Eng., 1997, 644:34-39.
[15] BAILES P J, LARKAIS K L. Influence of phase ratio on electrostatic coalescence of water-in-oil dispersions[J]. Chem. Eng. Res. Des., 1984, 62(1):33-38.
[16] BAILES P J. An experimental investigation into the use of high voltage DC fields for liquid phase separation[J]. Trans. I Chem. E., 1981, 59(A):229-237.
[17] ATTEN P, LUNDGAARD L, BERG G. A simplified model of electrocoalescence of two close water droplets in oil[J]. Journal of Electrostatics, 2006, 64:550-554.
[18] EOW J S, GHADIRI M, SHARIF A O, et al. Electrostatic enhancement of coalescence of water droplets in oil:a review of the current understanding[J]. Chem. Eng. J., 2001, 84(3):173-192.
[19] MHATRE S, VIVACQUA V, GHADIRI M, et al. Electrostatic phase separation:a review[J]. Chem. Eng. Res. Des., 2015, 96, 177-195.
[20] VIVACQUA V, MHATRE S, GHADIRI M, et al. Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields[J]. Chem. Eng. Res. Des., 2015, 104:658-668.
[21] MOUSAVI S H, GHADIRI M, BUCKLEY M, et al. Electro-coalescence of water drops in oils under pulsatile electric fields[J]. Chem. Eng. Sci., 2014, 120:130-142.
[22] MOUSAVICHOUBEH M, GHADIRI M, SHARIATY-NIASSAR M, et al. Electro-coalescence of an aqueous droplet at an oil-water interface[J]. Chem. Eng. Process., 2011, 50(3):338-344.
[23] MOUSAVICHOUBEH M, SHARIATY-NIASSAR M, GHADIRI M. The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil[J]. Chem. Eng. Sci., 2011, 66(21):5330-5337.
[24] VIVACQUA V, GHADIRI M, ABDULLAH A M, et al. Analysis of partial electrocoalescence by level-set and finite element methods[J]. Chem. Eng. Res. Des., 2016, 114:180-189.
[25] ROMMEL W, MEON W, BLASS E. Hydrodynamic modeling of droplet coalescence at liquid-liquid interfaces[J]. Separation Science and Technology, 1992, 27:129-159.
[26] CHARLES G E, MASON S G. The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces[J]. Journal of Colloid Science, 1960, 15:105-122.
[27] GHADIRI M, MARTIN C M, ARTEAGA P A, et al. Evaluation of the single contact electrical clamping force[J]. Chemical Engineering Science, 2006, 61(7):2290-2300.
[28] LESAINT C, GLOMM W R, LUNDGAARD L E, et al. Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions[J]. Colloids Surf. A:Physicochem. Eng. Aspects, 2009, 352:63-69.
[29] VIVACQUA V, GHADIRI M, ABDULLAH A M, et al. Linear dynamics modeling of droplet deformation in a pulsatile electric field[J]. Chem. Eng. Res. Des., 2016, 114:162-170.
[30] HAKIKI F, MAHARSI D A, MARHAENDRAIANA T. Surfactant-polymer core flood simulation and uncertainty analysis derived from laboratory study[J]. J. Eng. Technol. Sci., 2015, 47(6):706-724.
[31] 孙治谦, 金有海, 王磊, 等. 高频脉冲电场参数对水滴极化变形的影响[J]. 化工学报, 2012, 63(10):3112-3118. SUN Z Q, JIN Y H, WANG L, et al. Impact of high-frequency pulse electric field parameters on polarization and deformation of water droplet[J]. CIESC Journal, 2012, 63(10):3112-3118. |