[1] |
王少平, 杨继生.中国工业能源调整的长期战略与短期措施——基于12个主要工业行业能源需求的综列协整分析[J]. 中国社会科学, 2006, 4(1):88-96. WANG S P, YANG J S. Long term strategy and short term measures for China's industrial energy adjustment:a comprehensive cointegration analysis based on the energy demand of 12 major industrial sectors[J]. Chinese Society Science, 2006, 4(1):88-96.
|
[2] |
陈黎.能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安:西安交通大学, 2013. CHEN L. Numerical simulation of multiscale and multiphysics coupled reaction transport processes in energy and environmental science[D]. Xi'an:Xi'an Jiaotong University, 2013.
|
[3] |
ROINIOTI A, KORONEOS C. The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth[J]. Renewable & Sustainable Energy Reviews, 2017, 76:448-459.
|
[4] |
MI Z, MENG J, DABO G, et al. Chinese CO2 emission flows have reversed since the global financial crisis[J]. Nature Communications, 2017, 8(1):1712.
|
[5] |
VALERIO L, FRANCESCO R, FRANK L. Predicting climate change using response theory:global averages and spatial patterns[J]. Journal of Statistical Physics, 2017, 166:1036-1064
|
[6] |
METZ B, DAVIDSON O R, BOSCH P R, et al. IPCC:Summary for Policymakers//Climate Change 2007:Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, United Kingdom:Cambridge University Press, 2007.
|
[7] |
BACHU S. CO2 storage in geological media:role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science, 2008, 34:254-273.
|
[8] |
周军平, 鲜学福, 姜永东, 等. 不可采煤层CO2封存的数值模拟[J]. 重庆大学学报, 2011, 34(7):83-90. ZHOU J P, XIAN X F, JIANG Y D, et al. Numerical simulation of CO2 sequestration in non-recoverable coal seam[J].Journal of Chongqing University, 2011, 34(7):83-90.
|
[9] |
董华松, 黄文辉. CO2捕捉与地质封存及泄漏监测技术现状与进展[J]. 资源与产业, 2010, 12(2):123-128. DONG H S, HUANG W H. Status and progress of CO2 capture and geological storage and leakage monitoring technology[J]. Resources and Industry, 2010, 12(2):123-128.
|
[10] |
中国21世纪议程管理中心.《第三次气候变化国家评估报告》特别报告:中国二氧化碳利用技术评估报告[R]. 北京:科学出版社, 2014. 21 Century Agenda Management Center of China. Special report on the third national assessment report on climate change:China's carbon dioxide utilization technology assessment report[R]. Beijing:Science Press, 2014.
|
[11] |
贾承造, 郑民, 张永峰, 等. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. JIA C Z, ZHENG M, ZHANG Y F, et al. Unconventional oil and gas resources and exploration and development prospects in China[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.
|
[12] |
CLARK C E, BURNHAM A J, HARTO C B, et al. Introduction:the technology and policy of hydraulic fracturing and potential environmental impacts of shale gas development[J]. Environmental Practice, 2012, 14(4):249-261.
|
[13] |
CHATENEVER A, CALHOUN J C. Visual examinations of fluid behavior in porous media(1)[J]. J. Pet. Technol., 1952, 4:149-156.
|
[14] |
CHATENEV A, INDRA M K, KYTE J R. Microscopic observations of solution gas-drive behavior[J]. Journal of Petroleum Technology, 1959, 11(6):13-15.
|
[15] |
BLOIS G, BARROS J M, CHRISTENSEN K T. PIV investigation of two-phase flow in a micro-pillar microfluidic device[C]//10th International Symposium on Particle Image Velocimetry. Delft, the Netherlands, 2013.
|
[16] |
ZHANG C Y, OOSTORM M, GRATE J W, et al. Liquid CO2 displacement of water in a dual-permeability pore[J]. Environ. Sci. Technol., 2011, 45:7581-7588.
|
[17] |
RIAZI M, SOHRABI M, JAMIOLAHMADY M. Experimental study of pore-scale mechanisms of carbonated water injection[J]. Transp. Porous Med., 2011, 86(1):73-86.
|
[18] |
ZUO L, ZHANG C Y, FALTA R W, et al. Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks[J]. Advances in Water Resources, 2013, 53:188-197.
|
[19] |
ZHANG C Y, WERTH C J, WEBB A G. A magnetic resonance imaging study of dense nonaqueous phase liquid dissolution from angular porous media[J]. Environ. Sci. Technol., 2002, 36:3310-3317.
|
[20] |
JAMALOEI B Y, KHARRAT R. Analysis of microscopic displacement mechanisms of dilute surfactant flooding in oil-wet and water-wet porous media[J]. Transp. Porous Med., 2010, 81:1-19.
|
[21] |
ZHANG C Y, OOSTROM M, WIETSMA T W. Influence of viscous and capillary forces on immiscible fluid displacement pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering[J]. Energy Fuels, 2011, 25:3493-3505.
|
[22] |
ZHANG C, WERTH C J, WEBB A G. Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging[J]. Environmental Science & Technology, 2007, 41(10):3672-3678.
|
[23] |
KIM Y, WAN J, KNEAFSEY T J, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine:pore-scale studies in micromodels[J]. Environ. Sci. Technol., 2012, 46:4228-4235.
|
[24] |
KHAJEPOUR H, MAHMOODI M, BIRIA D, et al. Investigation of wettability alteration through relative permeability measurement during MEOR process:a micromodel study[J]. Journal of Petroleum Science and Engineering, 2014, 120:10-17.
|
[25] |
高诚. 微多孔结构内单相与两相流动规律实验研究与数值模拟[D]. 北京:清华大学, 2015. GAO C. Experimental study and numerical simulation of single phase and two-phase flow in micro porous structure[D]. Beijing:Tsinghua University, 2015.
|
[26] |
GHASSEMI A, PAK A. Pore scale study of permeability and tortuosity for flow through particulate media using lattice Boltzmann method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35:886-899.
|
[27] |
BAHMAN S, ALI P. Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method[J]. Phys. Rev. E, 2015, 91(5):053301.
|
[28] |
KOPONEN A, KATAJA M, TIMONEN J. Tortuous flow in porous media[J]. Phys. Rev. E, 1996, 54(1):406-410.
|
[29] |
WEISSBERG H L. Effective diffusion coefficient in porous media[J]. Appl. Phys., 1963, 34(9):26-36.
|
[30] |
MAURET E, RENAUD M. Transport phenomena in multi-particle systems(Ⅰ):Limits of applicability of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres[J]. Chem. Eng. Sci., 1999, 52:1807-1811.
|