[1] |
BERE M, MUYINGI H.Initial investigation of industrial control system (ICS) security using artificial immune system (AIS)[C]//International Conference on Emerging Trends in Networks and Computer Communications.IEEE, 2015:79-84.
|
[2] |
DOMGALD P C.The Application of Autonomic Computing For the Protection of Industrial Control Systems[M].Tucson:The University of Arizona, 2011.
|
[3] |
SIWAR K, LUDOVIC P C, MARC B, et al.A survey of approaches combining safety and security for industrial control systems[J].Reliability Engineering and System Safety, 2015, 139:156-178.
|
[4] |
BEAVER J M, BORGES-HINK R C, Buckner M A.An evaluation of machine learning methods to detect malicious SCADA commu-nications[C]//International Conference on Machine Learning and Applications.Miami, FL, USA:IEEE, 2013:54-59.
|
[5] |
NADER P, HONEINE P, BEAUSEROY P.One-class classification for intrusion detection in ACADA systems[J].IEEE Transactions on Industrial Informatics, 2014, 10(4):2308-2317.
|
[6] |
张腾飞, 范启福, 刘伟.基于支持向量机的SCADA系统入侵检测[J].化工自动化及仪表,2015, (2):153-156.ZHANG T F, FAN Q F, LIU W.A support vector machine-based intrusion detection method for SCADA system[J].Control and Instruments in Chemical Industry, 2015, (2):153-156.
|
[7] |
王华忠, 杨智慧, 颜秉勇, 等.融合PCA和PSO-SVM方法在工控入侵检测中的应用[J].科技通报, 2017, 33(1):80-85.WANG H Z, YANG Z H, YAN B Y, et al.Application of fusion PCA and PSO-SVM method in industrial control intrusion detection[J].Bulletin of Science and Technology, 2017, 33(1):80-85.
|
[8] |
尚文利, 李琳, 万明, 等.基于优化单类支持向量机的工业控制系统入侵检测算法[J].信息与控制, 2015, 44(6):678-684.SHANG W L, LI L, WAN M, et al.Intrusion detection algorithm based on optimized one-class support vector machine for industrial control system[J].Information & Control, 2015, 44(6):678-684.
|
[9] |
IRIE B, MIYAKE S.Capabilities of three-layered perceptrons[C]//IEEE International Conference on Neural Networks.IEEE, 1988:641-648.
|
[10] |
HORNIK K, STINCHCOMBE M, WHITE H.Multilayer feedfor-ward networks are universal approximators[J].Neural Networks, 1989, 2(5):359-366.
|
[11] |
LIN C J, CHEN C H, LEE C Y.A self-adaptive quantum radial basis function network for classification applications[C]//IEEE Interna-tional Joint Conference on Neural Networks, 2004.Proceedings.IEEE, 2011:3263-3268.
|
[12] |
MATISA N A, MAMAT W M F W.Clustered-hybrid multilayer perceptron network for pattern recognition application[J].Applied Soft Computing Journal, 2011, 11(1):1457-1466.
|
[13] |
MALAKOOTⅡ B, ZHOU Y Q.Approximating polynomial functions by feedforward artificial neural networks:capacity analysis and design[J].Applied Mathematics & Computation, 1998, 90(1):27-51.
|
[14] |
WENXU W, RUICHUN T, CHENG L, et al.A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights[J].Ocean Engineering, 2018, 162(10):8-107
|
[15] |
周爱武, 翟增辉, 刘慧婷.基于模拟退火算法改进的BP神经网络算法[J].微电子学与计算机, 2016, 33(4):144-147.ZHOU A W, ZHAI Z H, LIU H T.Improved BP neural network based on simulated annealing[J].Microelectronics & Computer, 2016, 33(4):144-147.
|
[16] |
MOUSAVI S M, MOSTAFAVI E S, JIAO P.Next generation prediction model for daily solar radiation on horizontal surface using a hybrid neural network and simulated annealing method[J].Energy Conversion & Management, 2017, 153:671-682.
|
[17] |
ALAVI A H, GANDOMI A H.Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing[J].Computers & Structures, 2011, 89(23):2176-2194.
|
[18] |
麻士东, 龚光红, 韩亮, 等.目标分配的蚁群-模拟退火算法及其改进[J].系统工程与电子技术, 2011, 33(5):1182-1186.MA S D, GONG G H, HAN L, et al.Hybrid strategy with ant colony and simulated annealing algorithm and its improvement in target assignment[J].Systems Engineering and Electronics, 2011, 33(5):1182-1186.
|
[19] |
闫利军, 李宗斌, 卫军胡.模拟退火算法的一种参数设定方法研究[J].系统仿真学报, 2008, 20(1):245-247.YAN L J, LI Z B, WEI J H.Study on parameter setting method for simulated annealing algorithm[J].Journal of System Simulation, 2008, 20(1):245-247.
|
[20] |
曾小华, 李广含, 宋大凤, 等.基于遗传算法优化的BP神经网络侧翻预警算法[J].华南理工大学学报(自然科学版), 2017, 45(2):30-38.ZENG X H, LI G H, SONG D F, et al.BP neural network rollover warning algorithm based on genetic algorithm optimization[J].Journal of South China University of Technology (Natural Science Edition), 2017, 45(2):30-38.
|
[21] |
刘浩然, 赵翠香, 李轩, 等.一种基于改进遗传算法的神经网络优化算法研究[J].仪器仪表学报, 2016, 37(7):1573-1580.LIU H R, ZHAO C X, LI X, et al.Study on a neural network optimization algorithm based on improved genetic algorithm[J].Chinese Journal of Scientific Instrument, 2016, 37(7):1573-1580.
|
[22] |
KAYA M.The effects of a new selection operator on the performance of a genetic algorithm[J].Applied Mathematics & Computation, 2011, 217(19):7669-7678.
|
[23] |
王东风, 孟丽.粒子群优化算法的性能分析和参数选择[J].自动化学报, 2016, 42(10):1552-1561.WANG D F, MENG L.Performance analysis and parameter selection of PSO algorithm[J].Journal of Automation, 2016, 42(10):1552-1561.
|
[24] |
杨景明, 穆晓伟, 车海军, 等.多策略改进的多目标粒子群优化算法[J].控制与决策, 2017, 32(3):435-442.YANG J M, MU X W, CHE H J, et al.Improved multi-objective particle swarm optimization algorithm based on multiple strategies[J].Control & Decision, 2017, 32(3):435-442.
|
[25] |
汤可宗, 李慧颖, 李娟, 等.一种求解复杂优化问题的改进粒子群优化算法[J].南京理工大学学报, 2015, 34(4):386-391.TANG K Z, LI H Y, LI J, et al.Improved particle swarm optimi-zation algorithm for solving complex optimization problems[J].Journal of Nanjing University of Science and Technology, 2015, 34(4):386-391.
|
[26] |
ZHANG C, SHAO H, LI Y.Particle swarm optimization for evolving artificial neural network[C]//IEEE International Conference on Systems, Man, and Cybernetics.IEEE, 2002:2487-2490.
|
[27] |
SONG L K, FEI C W, BAI G C, et al.Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism[J].Advanced Enginee-ring Informatics, 2017, 33:144-153.
|
[28] |
MIRHALILI S, SADIQ A S.Magnetic optimization algorithm for training multi-layer perceptron[C]//IEEE, International Conference on Communication Software and Networks.IEEE, 2011:42-46.
|
[29] |
SI T, HAZRA S, JANA N D.Artificial neural network training using differential evolutionary algorithm for classification[C]//The International Conference on Information Systems Design and Intel-ligent Applications.2012:769-778.
|
[30] |
ZHANG J R, ZHANG J, LOK T M, et al.A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training[J].Applied Mathematics & Computation, 2007, 185(2):1026-1037.
|
[31] |
SETTLES M, RODEBAUGH B, SOULE T.Comparison of genetic algorithm and particle swarm optimizer when evolving a recurrent neural network[J].Lecture Notes in Computer Science, 2003, 27(23):148-149.
|
[32] |
MIRJALILI S.Hybrid particle swarm optimization and gravitational search algorithm for multilayer perceptron learning[J].Music Educators Journal, 2011, (4):70.
|
[33] |
GANIVADA A, RAY S S, PAL S K.Fuzzy rough sets, and a granular neural network for unsupervised feature selection[J].Neural Networks, 2013, 48(6):91-108.
|