[1] |
Ostrowski S R, Wilbur S, Chou S C S J, Pohl H R, Stevens Y W, Allred P M, Roney N, Fay M, Tylenda C A. Agency for Toxic Substances and Disease Registry’s 1997 priority list of hazardous substances. Latent effects-carcinogenesis, neurotoxicology, and developmental deficits in humans and animals[J]. Toxicology and Industrial Health, 1999, 15(7):602-644
|
[2] |
Lado L R, Sun G F, Berg M, Zhang Q, Xue H B, Zheng Q M, Johnson C A. Groundwater arsenic contamination throughout China [J]. Science, 2013, 341(6148):866-868
|
[3] |
Satarug S, Baker J R, Urbenjapol S, Elkins M H, Reilly P E B, Williams D J, Moore M R. A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population [J]. Toxicology Letters, 2003,137(1-2):65-83
|
[4] |
Cui Y J, Zhu Y G, Zhai R H, Huang Y Z, Qiu Y, Liang J Z. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China [J]. Enviroment International, 2005, 31(6):784-790
|
[5] |
Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C. Toxicological Profile for Cadmium [M]. Atlanta, GA, US:Agency for Toxic Substances and Disease Registry, 2012
|
[6] |
Staessen J A, Amery A, Lauwerys R R, Roels H A, Ide G, Vyncke G. Renal function and historical enviromental cadmium pollution from zinc smelters [J].The Lancet, 1994, 343(8912):1523-1527
|
[7] |
Sun H F, Li Y H, Ji Y F, Yang L S, Wang W Y, Li H R. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(2):308-314
|
[8] |
Ritchie V J, Ilgen A G, Mueller S H, et al. Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills District, Denali National Park and Preserve, Alaska [J]. Chemical Geology, 2012,33:172-188
|
[9] |
Sarmiento A M, Caraballo M A, Sanchez D R, et al. Dissolved and particulate metals and arsenic species mobility along a stream affected by Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) [J]. Applied Geochemistry, 2012,27(10):1944-1952
|
[10] |
Twidwell L G, Robins R G, Hohn J W. The removal of arsenic from aqueous solution by coprecipitation with iron (Ⅲ) // Reddy R G, Ramachandran V. Proceedings Arsenic Metallurgy: Fundamentals and Applications[C]. 2005: 3-24
|
[11] |
De Klerk R J, Jia Y, Daenzer R, et al. Continuous circuit coprecipitation of arsenic (Ⅴ) with ferric iron by lime neutralization: process parameter effects on arsenic removal and precipitate quality[J]. Hydrometallurgy, 2012, 111/112: 65-72
|
[12] |
Jia Y, Demopoulos G P. Coprecipitation of arsenate with iron (Ⅲ) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention[J]. Water Research, 2008, 42(3): 661-668
|
[13] |
Zuyi T, Taiwei C, Weijuan L. On the application of surface complexation models to ionic adsorption[J]. Journal of Colloid and Interface Science, 2000, 232(1): 174-177
|
[14] |
Goldberg S, Johnston C T. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling[J]. Journal of Colloid and Interface Science, 2001, 234(1): 204-216
|
[15] |
Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite(2): Kinetic evaluation using a pressure-jump relaxation technique[J]. Environmental Science & Technology, 1997, 31(2): 321-326.
|
[16] |
Stachowicz M, Hiemstra T, van Riemsdijk W H. Surface speciation of As (Ⅲ) and As (Ⅴ) in relation to charge distribution[J]. Journal of Colloid and Interface Science, 2006, 302(1): 62-75
|
[17] |
Antelo J, Avena M, Fiol S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J]. Journal of Colloid and Interface Science, 2005, 285(2): 476-486
|
[18] |
Cheng Z, Van Geen A, Jing C, et al. Performance of a household-level arsenic removal system during 4-month deployments in Bangladesh[J]. Environmental Science & Technology, 2004, 38(12): 3442-3448
|
[19] |
Pakzadeh B, Batista J R. Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride[J]. Journal of Hazardous Materials, 2011, 188(1): 399-407
|
[20] |
Fuller C C, Davis J A, Waychunas G A. Surface chemistry of ferrihydrite(Ⅱ): Kinetics of arsenate adsorption and coprecipitation [J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2271-2282
|
[21] |
Manning B A, Fendorf S E, Goldberg S. Surface structures and stability of arsenic (Ⅲ) on goethite: spectroscopic evidence for inner-sphere complexes[J]. Environmental Science & Technology, 1998, 32(16): 2383-2388
|
[22] |
Tadanier C J, Eick M J. Formulating the charge-distribution multisite surface complexation model using FITEQL[J]. Soil Science Society of America Journal, 2002, 66(5): 1505-1517
|
[23] |
Jia Y, Xu L, Wang X, et al. Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite [J]. Geochimica et Cosmochimica Acta, 2007, 71(7): 1643-1654
|
[24] |
Li Na(李娜), Sun Zhumei(孙竹梅), Ruan Fuhui(阮福辉),Du Dongyun(杜冬云). Mechanism of removing arsenic (Ⅲ) with ferric chloride[J]. CIESC Journal (化工学报), 2012, 63(7):2224-2228"
|