• 化工学报 • Previous Articles     Next Articles

Molecular Thermodynamics of Gas Solubility ( I ) Henrys Constants of Gases in NonpolarSolvents

Hu Ying Xu Yingnian (Thermodynamics Research Laboratory, East China Institute of Chemical Technology) J. M. Prausnitz (Dept. Chem. Eng., University of California, Berkeley)   

  • Online:1987-03-25 Published:1987-03-25

气体溶解度的分子热力学(I)——气体在非极性溶剂中的Henry常数

胡英,徐英年,J.M.Prausnitz   

  1. 华东化工学院热力学研究室 ,华东化工学院热力学研究室 ,加州大学化学工程系XC 伯克利

Abstract: A molecular thermodynamic model of gas solubility in nonpolar solvents has been established. The Helmholtz energy of liquid mixture is calculated through the following three steps. First, the pure components in standard state are mixed isothermally to form an ideal gas mixture. Then each molecule is inflated into a hard sphere with diameterσ. The corresponding Helmholtz energy change is calculated by using the Mansoori-Carnahan-Starling-Leland equation. Finally, the molecules are charged with LJ 12-6 potential to form the real liquid mixture, where the structure is described by an approximated radial distribution function gij(r) = H(r-rij**) + βδ(r-rij*). Henrys constants are then calculated from residual chemical potential. With the use of the same LJ parameters,this model can predict the computer simulation results of Henrys constants quite well. In this respect, this model is superior to the Pierottis theory. For the practical systems, using only one adjustable parameter, the Henrys constants of various gases in C1-C20 alkanes and their isomers, naphthenes, aromatic hydrocarbons and liquid gases can be well correlated over a wide temperature range. The predictions for A△Hs1, △Ss1, and V1 are satisfactory either.

摘要: 本文介绍一个气体在非极性溶剂中溶解度的分子热力学模型.混合物的Helmholtz自由能分三步计算:首先将处于标准态的纯组分等温混合成理想气体混合物;然后将每个分子膨胀成具有直径σ的硬球,相应的Helmholtz自由能变化用Mansoori-Carnahan-Starling-Leland方程计算;最后按LJ12-6位能函数给分子充以位能,形成实际流体混合物.在这最后一步中,引入一个近似的径向分布函数:g_(ij)(γ)=H(γ-γ_(ij))+βδ(γ-γ_(ij)).Henry常数则通过剩余化学位求得.与计算机模拟实验数据比较的结果表明:在使用同样的LJ参数的条件下,本模型的预测结果显著优于常用的Pierotti理论.对于实际系统,本模型一般只用一个可调参数便可在较大的温度范围内很好地关联各种气体在C_1—C_(20)的正烷烃及其异构体、环烷烃、芳香烃和一些液化气体中的Henry常数.计算的△(?)_(s1),△(?)_(s1)及(?)_1亦令人满意.