1 Jackson, J.E., “Principal components and factor analysis (Ⅰ) Principal components”, J.Quality Technol., 12, 201—203(1980). 2 Dong, D., McAvoy, T.J., “Nonlinear principal component analysis based on principal curve and neural networks”, Comput. Chem. Eng., 20(1), 65—78(1996). 3 Kramer,M.A. “Nonlinear principal component analysis using autoassociative neural networks”, AIChE J., 37(2), 233—243(1991). 4 Tan, S., Mavrovouniotis, M.L., “Reducing data dimen-sionality through optimizing neural network inputs”, AIChE J., 41(6), 1471—1480(1995). 5 Jia, F., Martin, E.B., Morris, A.J., “Non-linear principal components analysis for process fault detection”, Com-put. Chem. Eng., 22, (S1), S851—S854(1998). 6 Shao, R., Jia, F., Martin, E.B., Morris, A.J., “Wavelets and non-linear principal components analysis for process monitoring”, Control Eng. Prac., 7, 865—879(1999). 7 Geng, Z.Q., Zhu, Q.X., “Multiscale nonlinear principle component analysis(NLPCA) and its application for chemical process monitoring”, Ind. Eng. Chem. Res., 44, 3585—3593(2005). 8 Hu, T., Du, H.B., Yao, P.J., “Prediction of process trends based on neural networks”, Chin. J. Chem. Eng., 10(3), 286—289(2002). 9 Hastie, T.J., Stuetzle, W., “Principal curves”, J. Amer. Stat. Assoc., 84, 502—516(1989). 10 Hertz, J., Krogh, A., Palmer, R.G., Introduction to the Theory of Neural Computation, Wesley Publisher Comp., Redwood City, CA, 198(1991). 11 Kumar, P., Kunzru, D., “Modeling of naphtha pyrolysis”, Ind. Eng. Chem. Process Des. Dev, 24, 774—782(1985). 12 Yang, E.F., Zhou, Q., Hu, Y.F., Xu, Y.M., “A soft-sensing approach to on-line predict the yields of industrial pyro-lysis furnace based on PCA-RBF neural networks”, J. Syst. Simulation, 13(Suppl), 194—197( 2001). (in Chi-nese)
|