CIESC Journal ›› 2012, Vol. 63 ›› Issue (9): 2941-2947.DOI: 10.3969/j.issn.0438-1157.2012.09.043

Previous Articles     Next Articles

Process alarm prognosis based on Logistic and ARMA models

WANG Feng, LI Hongguang, ZANG Hao   

  1. College of Information Science & Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2012-06-05 Revised:2012-06-15 Online:2012-09-05 Published:2012-09-05

基于Logistic和ARMA模型的过程报警预测

王锋, 李宏光, 臧灏   

  1. 北京化工大学信息科学与技术学院, 北京 100029
  • 通讯作者: 李宏光
  • 作者简介:王锋(1987-),男,硕士研究生。

Abstract: A Logistic regression and Autoregressive Moving Average(ARMA)model-based approach to process alarm event prognosis is explicitly introduced in this paper.A sequence of process alarm events which includes states and duration of the alarm events can be extracted from historical data before establishing corresponding Logistic regression and ARMA models,thereby well predicting the process alarm events.A numerical example as well as industrial process data is employed to validate the effectiveness of the proposed methods.

Key words: Logistic regression models, ARMA models, process alarm events, prognosis

摘要: 提出了一种基于Logistic回归模型和ARMA模型相结合的过程报警事件预测方法,从历史数据中提取过程报警事件序列,并分解成报警状态及报警状态的持续时间,对应建立Logistic回归模型和ARMA模型分别对其进行预测,最终实现对过程报警事件的预测。通过数值实例分析和工业过程数据进行了验证,表明该方法能够准确地预测过程报警事件。

关键词: Logistic回归模型, ARMA模型, 过程报警事件, 预测

CLC Number: