CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5107-5116.DOI: 10.11949/0438-1157.20200393
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Guohao LI(),Daoming DENG(),Jing GONG
Received:
2020-04-14
Revised:
2020-07-01
Online:
2020-11-05
Published:
2020-11-05
Contact:
Daoming DENG
通讯作者:
邓道明
作者简介:
李国豪(1996—),男,硕士研究生,基金资助:
CLC Number:
Guohao LI,Daoming DENG,Jing GONG. A new model of critical gas velocities for liquid accumulations in wet gas pipelines[J]. CIESC Journal, 2020, 71(11): 5107-5116.
李国豪,邓道明,宫敬. 湿气管道积液临界气速预测的新模型[J]. 化工学报, 2020, 71(11): 5107-5116.
Add to citation manager EndNote|Ris|BibTeX
D/ mm | θ/ (°) | ρl/ (kg/m3) | ρg/ (kg/m3) | μl/ (Pa·s) | usl/ (m/s) | μg/ (Pa·s) |
---|---|---|---|---|---|---|
76.2 | 2.00 | 1000 | 1.18 | 0.001 | 0.001 | 1.80×10-5 |
Table 1 Air-water experimental parameters in 3″ upwardly inclined pipeline
D/ mm | θ/ (°) | ρl/ (kg/m3) | ρg/ (kg/m3) | μl/ (Pa·s) | usl/ (m/s) | μg/ (Pa·s) |
---|---|---|---|---|---|---|
76.2 | 2.00 | 1000 | 1.18 | 0.001 | 0.001 | 1.80×10-5 |
Ref. | D/mm | θ/(°) | 流体 | p/MPa | usl/(m/s) | ρl/(kg/m3) | ρg/(kg/m3) |
---|---|---|---|---|---|---|---|
[ | 76.2 | 2~30 | 空气/水 | 0.1 | 0.01~0.1 | 1000 | 1.18 |
[ | 50.8 | 1 | 空气/水 | 0.1 | 0.0015~0.023 | 1000 | 1.18 |
[ | 76.2 | 2~20 | 空气/水 | 0.1 | 0.001~0.01 | 1000 | 1.18 |
[ | 100 | 0.5~5 | SF6/水;SF6/Exxosal D80 | 0.34~0.69 | 0.001 | 998;812、821 | 22.6~46.9 |
[ | 100 | 1~2 | SF6/Exxosal D80 | 0.71 | 0.005 | 829 | 50.0 |
[ | 154.9 | 2 | N2/Isopar-L | 1.38~2.76 | 0.0015~0.023 | 760 | 1.18 |
[ | 152.4 | 1 | 空气/水 | 0.1 | 0.0015~0.023 | 1000 | 1.18 |
[ | 151.5 | 2 | 空气/水;空气/ Isopar-L | 0.1 | 0.01~0.05 | 1000;760 | 1.18 |
Table 2 Parameters of liquid accumulation experiments
Ref. | D/mm | θ/(°) | 流体 | p/MPa | usl/(m/s) | ρl/(kg/m3) | ρg/(kg/m3) |
---|---|---|---|---|---|---|---|
[ | 76.2 | 2~30 | 空气/水 | 0.1 | 0.01~0.1 | 1000 | 1.18 |
[ | 50.8 | 1 | 空气/水 | 0.1 | 0.0015~0.023 | 1000 | 1.18 |
[ | 76.2 | 2~20 | 空气/水 | 0.1 | 0.001~0.01 | 1000 | 1.18 |
[ | 100 | 0.5~5 | SF6/水;SF6/Exxosal D80 | 0.34~0.69 | 0.001 | 998;812、821 | 22.6~46.9 |
[ | 100 | 1~2 | SF6/Exxosal D80 | 0.71 | 0.005 | 829 | 50.0 |
[ | 154.9 | 2 | N2/Isopar-L | 1.38~2.76 | 0.0015~0.023 | 760 | 1.18 |
[ | 152.4 | 1 | 空气/水 | 0.1 | 0.0015~0.023 | 1000 | 1.18 |
[ | 151.5 | 2 | 空气/水;空气/ Isopar-L | 0.1 | 0.01~0.05 | 1000;760 | 1.18 |
模型 | 与全部实验数据对比 | 与模拟高压实验数据对比 | ||
---|---|---|---|---|
平均相对偏差 | 标准差s/% | 平均相对偏差 | 标准差s/% | |
新模型 | 5 | 16 | -1 | 8 |
Ref.[ | 4 | 27 | -15 | 13 |
Ref.[ | -11 | 17 | -22 | 8 |
Ref.[ | 10 | 47 | 5 | 61 |
Table 3 Prediction deviations for new and other models
模型 | 与全部实验数据对比 | 与模拟高压实验数据对比 | ||
---|---|---|---|---|
平均相对偏差 | 标准差s/% | 平均相对偏差 | 标准差s/% | |
新模型 | 5 | 16 | -1 | 8 |
Ref.[ | 4 | 27 | -15 | 13 |
Ref.[ | -11 | 17 | -22 | 8 |
Ref.[ | 10 | 47 | 5 | 61 |
1 | Meng W H. Low liquid loading gas-liquid two-phase flow in near horizontal pipes[D]. Tulsa: University of Tulsa, 1999. |
2 | Adewumi M A, Mucharam L. Compositional multiphase hydrodynamic modeling of gas/gas-condensate dispersed flow in gas pipelines[J]. SPE Production Engineering, 1990, 5(1): 85-90. |
3 | Sun J Y, Jepson W P. Slug flow characteristics and their effect on corrosion rates in horizontal oil and gas pipelines[C]//SPE Annual Technical Conference and Exhibition. Washington, D. |
C.: Society of Petroleum Engineers, 1992: SPE-24787-MS. | |
4 | 刘建武, 何利民. 积液在湿气输送管道中的发展过程分析[J]. 油气田地面工程, 2019, 38(S1): 76-80. |
Liu J W, He L M. Analysis of liquid loading development process in wet gas pipelines[J]. Oil-Gas Field Surface Engineering, 2019, 28(S1): 76-80. | |
5 | 张爱娟, 唱永磊. 湿气管线积液影响因素及其敏感性分析[J]. 石油化工高等学校学报, 2016, 29(5): 94-98. |
Zhang A J, Chang Y L. Analysis of affecting factors and sensitivity on liquid inventory in condensate gas pipeline[J]. Journal of Petrochemical Universities, 2016, 29(5): 94-98. | |
6 | Belt R J. On the liquid film in inclined annular flow[D]. Delft: Technische Universiteit Delft, 2007. |
7 | Yuan G, Pereyra E, Sarica C, et al. An experimental study on liquid loading of vertical and deviated gas wells[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA: Society of Petroleum Engineers, 2013: SPE-164516-MS. |
8 | Fan Y, Pereyra E, Torres C, et al. Experimental study on the onset of intermittent flow and pseudo-slug characteristics in upward inclined pipes[C]//17th International Conference on Multiphase Production Technology. Cannes, France: BHR Group, 2015: BHR-2015-B1. |
9 | Alsaadi Y, Pereyra E, Torres C, et al. Liquid loading of highly deviated gas wells from 60° to 88° [C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: Society of Petroleum Engineers, 2015: SPE-174852-MS. |
10 | Wang Z, Guo L, Wu W, et al. Experimental study on the critical gas velocity of liquid-loading onset in an inclined coiled tube[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 22-33. |
11 | Skopich A, Pereyra E, Sarica C. Pipe-diameter effect on liquid loading in vertical gas wells[J]. SPE Production & Operations, 2015, 30(2): 164-176. |
12 | Landman M J. Non-unique holdup and pressure drop in two-phase stratified inclined pipe flow[J]. International Journal of Multiphase Flow, 1991, 17(3): 377-394. |
13 | Barnea D, Taitel Y. Structural and interfacial stability of multiple solutions for stratified flow[J]. International Journal of Multiphase Flow, 1992, 18(6): 821-830. |
14 | Espedal M. An experimental investigation of stratified two-phase pipe flow at small inclinations[D]. Norway: Norwegian University of Science and Technology, 1998. |
15 | Langsholt M, Holm H. Liquid accumulation in gas-condensate pipelines-an experimental study[C]//13th International Conference on Multiphase Production Technology. Edinburgh, UK: BHR Group, 2007: 33-46. |
16 | Kjolaas J, Unander T E, Wolden M, et al. Experiments for low liquid loading with liquid holdup discontinuities in two- and three-phase flows[C]//17th International Conference on Multiphase Production Technology. Cannes, France, 2015. |
17 | Fan Y. A study of the onset of liquid accumulation and pseudo-slug flow characterization[D]. Tulsa: University of Tulsa, 2017. |
18 | Biberg D, Staff G, Hoyer N, et al. Accounting for flow model uncertainties in gas-condensate field design using the OLGA high definition stratified flow model[C]//17th International Conference on Multiphase Production Technology. Cannes, France, 2015: BHR-2015-G5. |
19 | 沈伟伟. 管道积液预测研究[D]. 北京: 中国石油大学(北京), 2019. |
Shen W W. Prediction of liquid accumulation in gas pipeline[D]. Beijing: China University of Petroleum, 2019. | |
20 | Turner R, Hubbard M, Dukler A. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11): 1475-1482. |
21 | Alsaadi Y. Low liquid loading two-phase and three-phase flows in slightly upward inclined pipes[D]. Tulsa: University of Tulsa, 2019. |
22 | Barnea D. Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5): 733-744. |
23 | Luo S, Kelkar M, Pereyra E, et al. A new comprehensive model for predicting liquid loading in gas wells[J]. SPE Production & Operations, 2014, 29(4): 337-349. |
24 | Shekhar S, Kelkar M, Hearn W J, et al. Improved prediction of liquid loading in gas wells[J]. SPE Production & Operations, 2017, 32(4): 539-550. |
25 | Paz R J, Shoham O. Film-thickness distribution for annular flow in directional wells: horizontal to vertical[J]. SPE Production & Operations, 1999, 4(2): 83-91. |
26 | 沈伟伟, 邓道明, 刘乔平, 等. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330. |
Shen W W, Deng D M, Liu Q P, et al. Prediction model of critical gas velocities in gas wells based on annular mist flow theory[J]. CIESC Journal, 2019, 70(4): 1318-1330. | |
27 | Brito R. Effect of horizontal well trajectory on two-phase gas-liquid flow behavior[D]. Tulsa: University of Tulsa, 2015. |
28 | Kowalski. Wall and interfacial shear stress in stratified flow in a horizontal pipe[J]. AIChE J., 1987, 33(2): 274-281. |
29 | Fan Y. Analysis of flow pattern transition from segregated to slug flow in upward inclined pipes[J]. International Journal of Multiphase Flow, 2019, 115: 19-39. |
30 | 邓道明, 董勇, 涂多运, 等. 高压大直径天然气-凝析液管流计算模型[J]. 化工学报, 2013, 64(9): 3096-3101. |
Deng D M, Dong Y, Tu D Y, et al. Modeling of gas-condensate flow in high pressure and large diameter pipelines[J]. CIESC Journal, 2013, 64(9): 3096-3101. | |
31 | Biberg D. An explicit approximation for the wetted angle in two-phase stratified pipe flow[J]. The Canadian Journal of Chemical Engineering, 1999, 77(6):1221-1224. |
32 | Taitel Y, Dukler A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE J., 1976, 22: 47-55. |
33 | Rodrigues H. Pressure effects on low-liquid loading two-phase flow in near-horizontal upward inclined pipes[D]. Tulsa: University of Tulsa, 2018. |
34 | Nair J. Gas lift application and severe slugging in toe down horizontal wells[D]. Tulsa: University of Tulsa, 2017. |
[1] | Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory [J]. CIESC Journal, 2019, 70(4): 1318-1330. |
[2] | XU Xiaoxiao, CHEN Long, XIAO Jiumin, LIU Chao. Experimental study on pressure drop characteristic of two-phase flow in reduced tee junction with flat tube [J]. CIESC Journal, 2018, 69(S2): 174-179. |
[3] | XIAO Rongge, WANG Yonghong, PAN Jie, WEI Bingqian, CHEN Gang. Transition between stratified and non stratified flow pattern for gas-liquid flow in horizontal porous pipe [J]. CIESC Journal, 2013, 64(10): 3606-3611. |
[4] | CHEN Hongxia1,XU Jinliang1,2, LI Zijin2, XIE Jian2, XING Feng2. Stratified flow pattern modulation by phase separation concept [J]. CIESC Journal, 2012, 63(7): 2045-2050. |
[5] | GU Hanyang, GUO Liejin. Stability of stratified gas-liquid flow in horizontal and near horizontal pipes [J]. , 2007, 15(5): 619-625. |
[6] | LI Weidong, ZHAO Qinxin, LI Rongxian. A Model of Turbulent-Laminar Gas-Liquid Stratified Flow [J]. , 2001, 9(2): 129-132. |
[7] | LI Weidong, LI Rongxian, CHEN Yongli, ZHOU Fangde. A Model for Predicting Holdup and Pressure Drop in Gas-Liquid Stratified Flow [J]. , 2001, 9(1): 65-69. |
[8] | Li Weidong, Sun Kexia, Zhou Fangde. Interfacial Shear Stress of Stratified Flow in a Horizontal Pipe [J]. , 1999, 7(3): 263-270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||