CIESC Journal ›› 2020, Vol. 71 ›› Issue (3): 1122-1130.DOI: 10.11949/0438-1157.20191467
• Process system engineering • Previous Articles Next Articles
Hongwei GUAN1(),Lingjian YE2(
),Feifan SHEN2,De GU3,Zhihuan SONG4
Received:
2019-12-03
Revised:
2019-12-10
Online:
2020-03-05
Published:
2020-03-05
Contact:
Lingjian YE
通讯作者:
叶凌箭
作者简介:
关宏伟(1977—),男,博士,讲师,基金资助:
CLC Number:
Hongwei GUAN, Lingjian YE, Feifan SHEN, De GU, Zhihuan SONG. Dynamic real-time optimization for gold cyanidation leaching process using economic model predictive control[J]. CIESC Journal, 2020, 71(3): 1122-1130.
关宏伟, 叶凌箭, 沈非凡, 顾德, 宋执环. 基于经济模型预测控制的金氰化浸出过程动态实时优化[J]. 化工学报, 2020, 71(3): 1122-1130.
参数 | 标称值 | 参数 | 标称值 |
---|---|---|---|
C CN , 0 ①/(mg/kg) | 200 | | 139 |
Cl, 0 ①/(mg/kg) | 0 | k 1 | 0.0011 |
C s , 0 ①/(mg/kg) | 100 | k 2 | 2.13 |
C o/(mg/kg) | 7 | k 3 | 0.961 |
C w/(kg/kg) | 0.39 | k 4 | 0.228 |
P Au/(CNY/mg) | 0.226 | k 5 | 3.6821×10-9 |
P CN/(CNY/mg) | 0.000015 | k 6 | 3.71 |
P CNd/(CNY/mg) | 0.0000025 | ρ s/(g/cm3) | 2.8 |
Q s/(kg/h) | 2500 | ρl /(g/cm3) | 1 |
V/m3 | 68 |
Table 1 Model parameters for gold cyanidation leaching process
参数 | 标称值 | 参数 | 标称值 |
---|---|---|---|
C CN , 0 ①/(mg/kg) | 200 | | 139 |
Cl, 0 ①/(mg/kg) | 0 | k 1 | 0.0011 |
C s , 0 ①/(mg/kg) | 100 | k 2 | 2.13 |
C o/(mg/kg) | 7 | k 3 | 0.961 |
C w/(kg/kg) | 0.39 | k 4 | 0.228 |
P Au/(CNY/mg) | 0.226 | k 5 | 3.6821×10-9 |
P CN/(CNY/mg) | 0.000015 | k 6 | 3.71 |
P CNd/(CNY/mg) | 0.0000025 | ρ s/(g/cm3) | 2.8 |
Q s/(kg/h) | 2500 | ρl /(g/cm3) | 1 |
V/m3 | 68 |
1 | 孙戬 . 金银冶金[M]. 北京: 冶金工业出版社, 2008. |
Sun J . Gold and Silver Metallurgy[M]. Beijing: Metallurgical Industry Press, 2008. | |
2 | de Andrade Lima L , Hodouin D . A lumped kinetic model for gold ore cyanidation[J]. Hydrometallurgy, 2005, 79(3): 121-137. |
3 | Rubisov D , Papangelakis V , Kondos P J C M Q . Fundamental kinetic models for gold ore cyanide leaching[J]. Canadian Metallurgical Quarterly, 1996, 35(4): 353-361. |
4 | Wadsworth M , Zhu X , Thompson J , et al . Gold dissolution and activation in cyanide solution: kinetics and mechanism[J]. Hydrometallurgy, 2000, 57(1): 1-11. |
5 | de Andrade Lima L , Hodouin D . Simulation study of the optimal distribution of cyanide in a gold leaching circuit[J]. Miner. Eng., 2006, 19(13): 1319-1327. |
6 | de Andrade Lima L , Hodouin D . Optimization of reactor volumes for gold cyanidation[J]. Miner. Eng., 2005, 18(7): 671-679. |
7 | Edgar T F , Himmelblau D M , Lasonl S . Optimization of Chemical Processes[M]. McGraw-Hill, 2001. |
8 | Marlin T E , Herymak A N . Real-time operations optimization of continuous processes[C]// Proceedings of the AIChE Symposium Series. New York: American Institute of Chemical Engineers, 1997. |
9 | Ariyur K B , Krstic M . Real-time Optimization by Extremum-seeking Control[M]. John Wiley & Sons, 2003. |
10 | Liu Y , Chang Y , Niu D , et al . Plant-wide optimization for gold hydrometallurgy based on the fuzzy qualitative model and interval number[J]. Journal of Chemometrics, 2018, 32(12): 3077-3099. |
11 | Zhang J , Mao Z Z , Jia R D , et al . Real time optimization based on a serial hybrid model for gold cyanidation leaching process[J]. Miner. Eng., 2015, 70: 250-263. |
12 | 黄德先, 叶心宇, 竺建敏, 等 . 化工过程先进控制[M]. 北京: 化学工业出版社, 2006. |
Huang D X , Ye X Y , Zhu J M , et al . Advanced Control for Chemical Processes[M]. Beijing: Chemical Industry Press, 2006. | |
13 | Engell S . Feedback control for optimal process operation[J]. Journal of Process Control, 2007, 17(3): 203-219. |
14 | Quelhas A D , de Jesus N J C , Pinto J C . Common vulnerabilities of RTO implementations in real chemical processes [J]. The Canadian Journal of Chemical Engineering, 2013, 91(4): 652-668. |
15 | Chen C Y , Joseph B . On-line optimization using a two-phase approach: an application study[J]. Industrial & Engineering Chemistry Research, 1987, 26(9): 1924-1930. |
16 | 张俊, 毛志忠, 贾润达 . 金氰化浸出过程建模及实时优化自适应策略[J]. 控制与决策, 2014, 29(7): 1211-1216. |
Zhang J , Mao Z Z , Jia R D . Modeling and real-time optimization adaptations for gold cyanidation leaching process[J]. Control and Decision, 2014, 29(7): 1211-1216. | |
17 | 张俊, 毛志忠, 贾润达 . 金氰化浸出过程实时优化[J]. 控制理论与应用, 2014, (9): 1198-1205. |
Zhang J , Mao Z Z , Jia R D . Real-time optimization for gold cyanidation leaching process[J]. Control Theory & Applications, 2014, (9): 1198-1205. | |
18 | 张俊, 毛志忠, 贾润达, 等 . 金氰化浸出过程自适应优化[J]. 化工学报, 2014, 65(12): 4890-4897. |
Zhang J , Mao Z Z , Jia R D , et al . Adaptive optimization for gold cyanidation leaching process[J]. CIESC Journal, 2014, 65(12): 4890-4897. | |
19 | 叶凌箭, 关宏伟 . 金氰化浸出过程的自优化控制[J]. 控制与决策, 2017, 32(3): 481-486. |
Ye L J , Guan H W . Self-optimizing control of gold cyanidation leaching process[J]. Control and Decision, 2017, 32(3): 481-486. | |
20 | Ye L J , Miao A , Zhang H . Real-time optimization of gold cyanidation leaching process in a two-layer control architecture integrating self-optimizing control and modifier adaptation [J]. Ind. Eng. Chem. Res., 2017, 56(14): 4002-4016. |
21 | Marchetti A , Chachuat B , Bonvin D . Modifier-adaptation methodology for real-time optimization [J]. Ind. Eng. Chem. Res., 2009, 48(13): 6022-6033. |
22 | Skogestad S . Plantwide control: the search for the self-optimizing control structure[J]. J. Proc. Control, 2000, 10(5): 487-507. |
23 | Ye L J , Cao Y , Yuan X F . Global approximation of self-optimizing controlled variables with average loss minimization[J]. Ind. Eng. Chem. Res., 2015, 54(48): 12040 -12053. |
24 | 叶凌箭, 李英道, 宋执环 . 一种构造化工过程被控变量的方法[J].化工学报, 2011, 62(8): 2221-2226 |
Ye L J , Li Y D , Song Z H . New approach for constructing controlled variables for chemical processes[J]. CIESC Journal, 2011, 62(8): 2221-2226 | |
25 | Ye L J , Cao Y , Li Y D , et al . Approximating necessary conditions of optimality as controlled variables[J]. Industrial & Engineering Chemistry Research, 2013. 52(2): 798-808. |
26 | 叶凌箭, 马修水, 宋执环 . 间歇过程的批间自优化控制[J]. 化工学报, 2015, 66(7): 2573-2580. |
Ye L J , Ma X S , Song Z H . Batch-to-batch self-optimizing control for batch processes[J]. CIESC Journal, 2015, 66(7): 2573-2580. | |
27 | He D , Wang Z , Liu Q , et al . Process feature change recognition based on model performance monitoring and adaptive model correction for the gold cyanidation leaching process[J]. IEEE Access, 2019, 7: 28955- 28967. |
28 | Ellis M , Durand H , Christofides P D . A tutorial review of economic model predictive control methods[J]. Journal of Process Control, 2014, 24(8): 1156-1178. |
29 | Santander O , Elkamel A , Budman H J C . Economic model predictive control of chemical processes with parameter uncertainty[J]. Computers & Chemical Engineering, 2016, 95: 10-20. |
30 | Chachuat B , Srinivasan B , Bonvin D . Adaptation strategies for real-time optimization[J]. Comput Chem. Eng., 2009, 33(10): 1557-1567. |
31 | Biegler L T . Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes[M]. SIAM, 2010. |
32 | Biegler L T , Zavala V M J C , Engineering C . Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582. |
33 | Simon D . Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches[M]. John Wiley & Sons, 2006. |
[1] | Biqiang LIU, Haishan CAO. Adsorption measurement method based on flow calibration and its error analysis [J]. CIESC Journal, 2022, 73(4): 1597-1605. |
[2] | Wanpeng ZHENG, Xiaoyong GAO, Guiyao ZHU, Xin ZUO. Research progress on crude oil operation optimization [J]. CIESC Journal, 2021, 72(11): 5481-5501. |
[3] | Siqi FENG, Xionglin LUO. Online estimation of switching time for a class of optimization-control mode switch of economic model predictive control [J]. CIESC Journal, 2020, 71(S2): 225-240. |
[4] | Huijun FENG, Lingen CHEN, Zhixiang WU, Wei TANG, Junchao SHI. Constructal optimization for an organic fluid shell-and-tube condenser based on entransy theory [J]. CIESC Journal, 2020, 71(S2): 98-103. |
[5] | Yanru PAN, Fei LIU. Estimation of microbial metabolic state based on hybrid cybernetic model [J]. CIESC Journal, 2020, 71(7): 3165-3171. |
[6] | Shuang WEN, Hong QI, Shaobin LIU, Yatao REN, Liming RUAN. Reconstruction of thermophysical parameters in inhomogeneous media using extended Kalman filter and unscented Kalman filter [J]. CIESC Journal, 2020, 71(4): 1432-1439. |
[7] | Chenying LI, Linlin LIU, Lei ZHANG, Siwen GU, Jian DU. Controllable heat exchanger network synthesis under uncertainty via multi-scenario optimization [J]. CIESC Journal, 2020, 71(3): 1154-1162. |
[8] | Dong HUANG, Xionglin LUO. Judgement of process transition control strategies for large-range conditions change of chemical processes [J]. CIESC Journal, 2019, 70(5): 1848-1857. |
[9] | Xiangkun MENG, Guoming CHEN, Chunliang ZHENG, Xiangfei WU, Gaogeng ZHU. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397. |
[10] | HUANG Weiqing, TAN Guiping, QIAN Yu. Computing and application analysis of maximum tolerable delay index for chemical reactor systems [J]. CIESC Journal, 2018, 69(3): 974-981. |
[11] | WANG Kuanglei, XIE Lei, CHEN Junghui, SU Hongye, WANG Jingdai. Simultaneous design and control of polyethylene process based on uncertainty Kriging model [J]. CIESC Journal, 2018, 69(3): 936-942. |
[12] | JIANG Hao, CHEN Bingzhen. Research progress of chemical process stability analysis [J]. CIESC Journal, 2018, 69(1): 76-87. |
[13] | ZHAO Yongming, LUO Yiqing, YUAN Xigang. An optimization model for tactical decision-making level and uncertainty risk management in petroleum supply chain [J]. CIESC Journal, 2017, 68(2): 746-758. |
[14] | ZHANG Yuanyuan, WANG Yonggang, TIAN Yajun, XIE Kechang. Techno-economic analysis method of coal to olefins process with market uncertainty [J]. CIESC Journal, 2017, 68(11): 4288-4300. |
[15] | HANG Chenzhe, MA Guoyuan, XU Dinghua, XU Shuxue, ZHANG Haiyun, TENG Junheng. Metrological characteristics of water-enthalpy method cooling capacity source [J]. CIESC Journal, 2016, 67(S2): 100-106. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||