1 |
孙戬 . 金银冶金[M]. 北京: 冶金工业出版社, 2008.
|
|
Sun J . Gold and Silver Metallurgy[M]. Beijing: Metallurgical Industry Press, 2008.
|
2 |
de Andrade Lima L , Hodouin D . A lumped kinetic model for gold ore cyanidation[J]. Hydrometallurgy, 2005, 79(3): 121-137.
|
3 |
Rubisov D , Papangelakis V , Kondos P J C M Q . Fundamental kinetic models for gold ore cyanide leaching[J]. Canadian Metallurgical Quarterly, 1996, 35(4): 353-361.
|
4 |
Wadsworth M , Zhu X , Thompson J , et al . Gold dissolution and activation in cyanide solution: kinetics and mechanism[J]. Hydrometallurgy, 2000, 57(1): 1-11.
|
5 |
de Andrade Lima L , Hodouin D . Simulation study of the optimal distribution of cyanide in a gold leaching circuit[J]. Miner. Eng., 2006, 19(13): 1319-1327.
|
6 |
de Andrade Lima L , Hodouin D . Optimization of reactor volumes for gold cyanidation[J]. Miner. Eng., 2005, 18(7): 671-679.
|
7 |
Edgar T F , Himmelblau D M , Lasonl S . Optimization of Chemical Processes[M]. McGraw-Hill, 2001.
|
8 |
Marlin T E , Herymak A N . Real-time operations optimization of continuous processes[C]// Proceedings of the AIChE Symposium Series. New York: American Institute of Chemical Engineers, 1997.
|
9 |
Ariyur K B , Krstic M . Real-time Optimization by Extremum-seeking Control[M]. John Wiley & Sons, 2003.
|
10 |
Liu Y , Chang Y , Niu D , et al . Plant-wide optimization for gold hydrometallurgy based on the fuzzy qualitative model and interval number[J]. Journal of Chemometrics, 2018, 32(12): 3077-3099.
|
11 |
Zhang J , Mao Z Z , Jia R D , et al . Real time optimization based on a serial hybrid model for gold cyanidation leaching process[J]. Miner. Eng., 2015, 70: 250-263.
|
12 |
黄德先, 叶心宇, 竺建敏, 等 . 化工过程先进控制[M]. 北京: 化学工业出版社, 2006.
|
|
Huang D X , Ye X Y , Zhu J M , et al . Advanced Control for Chemical Processes[M]. Beijing: Chemical Industry Press, 2006.
|
13 |
Engell S . Feedback control for optimal process operation[J]. Journal of Process Control, 2007, 17(3): 203-219.
|
14 |
Quelhas A D , de Jesus N J C , Pinto J C . Common vulnerabilities of RTO implementations in real chemical processes [J]. The Canadian Journal of Chemical Engineering, 2013, 91(4): 652-668.
|
15 |
Chen C Y , Joseph B . On-line optimization using a two-phase approach: an application study[J]. Industrial & Engineering Chemistry Research, 1987, 26(9): 1924-1930.
|
16 |
张俊, 毛志忠, 贾润达 . 金氰化浸出过程建模及实时优化自适应策略[J]. 控制与决策, 2014, 29(7): 1211-1216.
|
|
Zhang J , Mao Z Z , Jia R D . Modeling and real-time optimization adaptations for gold cyanidation leaching process[J]. Control and Decision, 2014, 29(7): 1211-1216.
|
17 |
张俊, 毛志忠, 贾润达 . 金氰化浸出过程实时优化[J]. 控制理论与应用, 2014, (9): 1198-1205.
|
|
Zhang J , Mao Z Z , Jia R D . Real-time optimization for gold cyanidation leaching process[J]. Control Theory & Applications, 2014, (9): 1198-1205.
|
18 |
张俊, 毛志忠, 贾润达, 等 . 金氰化浸出过程自适应优化[J]. 化工学报, 2014, 65(12): 4890-4897.
|
|
Zhang J , Mao Z Z , Jia R D , et al . Adaptive optimization for gold cyanidation leaching process[J]. CIESC Journal, 2014, 65(12): 4890-4897.
|
19 |
叶凌箭, 关宏伟 . 金氰化浸出过程的自优化控制[J]. 控制与决策, 2017, 32(3): 481-486.
|
|
Ye L J , Guan H W . Self-optimizing control of gold cyanidation leaching process[J]. Control and Decision, 2017, 32(3): 481-486.
|
20 |
Ye L J , Miao A , Zhang H . Real-time optimization of gold cyanidation leaching process in a two-layer control architecture integrating self-optimizing control and modifier adaptation [J]. Ind. Eng. Chem. Res., 2017, 56(14): 4002-4016.
|
21 |
Marchetti A , Chachuat B , Bonvin D . Modifier-adaptation methodology for real-time optimization [J]. Ind. Eng. Chem. Res., 2009, 48(13): 6022-6033.
|
22 |
Skogestad S . Plantwide control: the search for the self-optimizing control structure[J]. J. Proc. Control, 2000, 10(5): 487-507.
|
23 |
Ye L J , Cao Y , Yuan X F . Global approximation of self-optimizing controlled variables with average loss minimization[J]. Ind. Eng. Chem. Res., 2015, 54(48): 12040 -12053.
|
24 |
叶凌箭, 李英道, 宋执环 . 一种构造化工过程被控变量的方法[J].化工学报, 2011, 62(8): 2221-2226
|
|
Ye L J , Li Y D , Song Z H . New approach for constructing controlled variables for chemical processes[J]. CIESC Journal, 2011, 62(8): 2221-2226
|
25 |
Ye L J , Cao Y , Li Y D , et al . Approximating necessary conditions of optimality as controlled variables[J]. Industrial & Engineering Chemistry Research, 2013. 52(2): 798-808.
|
26 |
叶凌箭, 马修水, 宋执环 . 间歇过程的批间自优化控制[J]. 化工学报, 2015, 66(7): 2573-2580.
|
|
Ye L J , Ma X S , Song Z H . Batch-to-batch self-optimizing control for batch processes[J]. CIESC Journal, 2015, 66(7): 2573-2580.
|
27 |
He D , Wang Z , Liu Q , et al . Process feature change recognition based on model performance monitoring and adaptive model correction for the gold cyanidation leaching process[J]. IEEE Access, 2019, 7: 28955- 28967.
|
28 |
Ellis M , Durand H , Christofides P D . A tutorial review of economic model predictive control methods[J]. Journal of Process Control, 2014, 24(8): 1156-1178.
|
29 |
Santander O , Elkamel A , Budman H J C . Economic model predictive control of chemical processes with parameter uncertainty[J]. Computers & Chemical Engineering, 2016, 95: 10-20.
|
30 |
Chachuat B , Srinivasan B , Bonvin D . Adaptation strategies for real-time optimization[J]. Comput Chem. Eng., 2009, 33(10): 1557-1567.
|
31 |
Biegler L T . Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes[M]. SIAM, 2010.
|
32 |
Biegler L T , Zavala V M J C , Engineering C . Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582.
|
33 |
Simon D . Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches[M]. John Wiley & Sons, 2006.
|