CIESC Journal ›› 2020, Vol. 71 ›› Issue (4): 1696-1711.DOI: 10.11949/0438-1157.20190946
• Process system engineering • Previous Articles Next Articles
Lijing ZANG(),Kejin HUANG(),Yang YUAN,Xing QIAN,Liang ZHANG,Shaofeng WANG,Haisheng CHEN
Received:
2019-08-20
Revised:
2019-12-08
Online:
2020-04-05
Published:
2020-04-05
Contact:
Kejin HUANG
通讯作者:
黄克谨
作者简介:
臧立静(1994—),女,博士研究生,基金资助:
CLC Number:
Lijing ZANG, Kejin HUANG, Yang YUAN, Xing QIAN, Liang ZHANG, Shaofeng WANG, Haisheng CHEN. Optimal topological structure of vapor recompressed dividing-wall columns for separation of light-component dominated mixtures[J]. CIESC Journal, 2020, 71(4): 1696-1711.
臧立静, 黄克谨, 苑杨, 钱行, 张亮, 王韶峰, 陈海胜. 轻组分绝对占优的蒸汽再压缩隔离壁蒸馏塔的最优拓扑结构[J]. 化工学报, 2020, 71(4): 1696-1711.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 | ||
---|---|---|---|
塔顶压力/atm | 1.00 | ||
塔板压降/atm | 0.0068 | ||
进料流率/(kmol/h) | 1000 | ||
进料压力/atm | 1.088 | ||
进料温度(泡点)/K | 358.78 | ||
液/气相进料(FL/FV)组成/% (mol) | |||
苯 | 0.900 | ||
甲苯 | 0.050 | ||
邻二甲苯 | 0.050 | ||
产品规定/% (mol) | |||
塔顶产品(D) | 苯 | 0.995 | |
侧线产品(S) | 甲苯 | 0.995 | |
塔底产品(B) | 邻二甲苯 | 0.995 |
Table 1 Operating conditions and product specifications of Example Ⅰ
参数 | 数值 | ||
---|---|---|---|
塔顶压力/atm | 1.00 | ||
塔板压降/atm | 0.0068 | ||
进料流率/(kmol/h) | 1000 | ||
进料压力/atm | 1.088 | ||
进料温度(泡点)/K | 358.78 | ||
液/气相进料(FL/FV)组成/% (mol) | |||
苯 | 0.900 | ||
甲苯 | 0.050 | ||
邻二甲苯 | 0.050 | ||
产品规定/% (mol) | |||
塔顶产品(D) | 苯 | 0.995 | |
侧线产品(S) | 甲苯 | 0.995 | |
塔底产品(B) | 邻二甲苯 | 0.995 |
相关费用 | 过程设计 | ||||
---|---|---|---|---|---|
DWC | DWC-VRHP (FPH) | DWC-VRHP (FPH-PF) | DWC-VRHP (FPH-PF-MDC1) | DWC-VRHP (FPH-PF-MDC1-MDC2) | |
塔的投资费用/USD | 4543.89×103 | 4040.16×103 | 3749.25×103 | 3719.85×103 | 3793.62×103 |
再沸器的投资 费用/USD | 715.35×103 | 433.20×103 | 329.28×103 | 315.51×103 | 318.60×103 |
冷凝器的投资 费用/USD | 737.67×103 | 432.63×103 | 318.39×103 | 303.51×103 | 305.40×103 |
冷却器的投资 费用/USD | 0 | 80.07×103 | 101.94×103 | 104.76×103 | 105.48×103 |
压缩机的投资 费用/USD | 0 | 1172.22×103 | 1754.49×103 | 1864.47×103 | 2045.37×103 |
热交换器的投资 费用/USD | 0 | 161.28×103 | 204.90×103 | 210.75×103 | 243.54×103 |
中间再沸器的投资费用/USD | 0 | 949.74×103 | 1385.10×103 | 1548.00×103 | 1688.70×103 |
蒸汽费用/ (USD/a) | 3006.53×103 | 1375.56×103 | 902.07×103 | 844.69×103 | 857.37×103 |
冷却水费用/ (USD/a) | 41.53×103 | 19.60×103 | 13.36×103 | 12.64×103 | 12.76×103 |
电费/(USD/a) | 0 | 93.18×103 | 134.69×103 | 140.44×103 | 150.07×103 |
QTUC/kW | 12534.66 | 6429.48(-48.71%) | 4764.83(-61.99%) | 4568.49(-63.55%) | 4693.08(-62.56%) |
CI/USD | 5996.91×103 | 7269.30×103(+21.22%) | 7843.35×103(+30.79%) | 8066.85×103(+34.52%) | 8500.71×103(+41.75%) |
OC/(USD/a) | 3048.06×103 | 1488.34×103(-51.17%) | 1050.12×103(-65.55%) | 997.77×103(-67.26%) | 1020.20×103(-66.53%) |
TAC/(USD/a) | 5047.03×103 | 3911.44×103(-22.50%) | 3664.57×103(-27.39%) | 3686.72×103(-26.95%) | 3853.77×103(-23.64%) |
βpbt/a | 3 | 3 | 3 | 3 | 3 |
Table 2 Results of all process designs studied in Example Ⅰ
相关费用 | 过程设计 | ||||
---|---|---|---|---|---|
DWC | DWC-VRHP (FPH) | DWC-VRHP (FPH-PF) | DWC-VRHP (FPH-PF-MDC1) | DWC-VRHP (FPH-PF-MDC1-MDC2) | |
塔的投资费用/USD | 4543.89×103 | 4040.16×103 | 3749.25×103 | 3719.85×103 | 3793.62×103 |
再沸器的投资 费用/USD | 715.35×103 | 433.20×103 | 329.28×103 | 315.51×103 | 318.60×103 |
冷凝器的投资 费用/USD | 737.67×103 | 432.63×103 | 318.39×103 | 303.51×103 | 305.40×103 |
冷却器的投资 费用/USD | 0 | 80.07×103 | 101.94×103 | 104.76×103 | 105.48×103 |
压缩机的投资 费用/USD | 0 | 1172.22×103 | 1754.49×103 | 1864.47×103 | 2045.37×103 |
热交换器的投资 费用/USD | 0 | 161.28×103 | 204.90×103 | 210.75×103 | 243.54×103 |
中间再沸器的投资费用/USD | 0 | 949.74×103 | 1385.10×103 | 1548.00×103 | 1688.70×103 |
蒸汽费用/ (USD/a) | 3006.53×103 | 1375.56×103 | 902.07×103 | 844.69×103 | 857.37×103 |
冷却水费用/ (USD/a) | 41.53×103 | 19.60×103 | 13.36×103 | 12.64×103 | 12.76×103 |
电费/(USD/a) | 0 | 93.18×103 | 134.69×103 | 140.44×103 | 150.07×103 |
QTUC/kW | 12534.66 | 6429.48(-48.71%) | 4764.83(-61.99%) | 4568.49(-63.55%) | 4693.08(-62.56%) |
CI/USD | 5996.91×103 | 7269.30×103(+21.22%) | 7843.35×103(+30.79%) | 8066.85×103(+34.52%) | 8500.71×103(+41.75%) |
OC/(USD/a) | 3048.06×103 | 1488.34×103(-51.17%) | 1050.12×103(-65.55%) | 997.77×103(-67.26%) | 1020.20×103(-66.53%) |
TAC/(USD/a) | 5047.03×103 | 3911.44×103(-22.50%) | 3664.57×103(-27.39%) | 3686.72×103(-26.95%) | 3853.77×103(-23.64%) |
βpbt/a | 3 | 3 | 3 | 3 | 3 |
参数 | 数值 | |
---|---|---|
塔顶压力/atm | 1.00 | |
塔板压降/atm | 0.0068 | |
进料流率/(kmol/h) | 1000 | |
进料压力/atm | 1.088 | |
进料温度(泡点)/K | 314.39 | |
液/气相进料(FL/FV)组成/% (mol) | ||
正戊烷 | 0.900 | |
正己烷 | 0.050 | |
正庚烷 | 0.050 | |
产品规定/% (mol) | ||
塔顶产品(D) | 正戊烷 | 0.995 |
侧线产品(S) | 正己烷 | 0.995 |
塔底产品(B) | 正庚烷 | 0.995 |
Table 3 Operating conditions and product specifications of Example Ⅱ
参数 | 数值 | |
---|---|---|
塔顶压力/atm | 1.00 | |
塔板压降/atm | 0.0068 | |
进料流率/(kmol/h) | 1000 | |
进料压力/atm | 1.088 | |
进料温度(泡点)/K | 314.39 | |
液/气相进料(FL/FV)组成/% (mol) | ||
正戊烷 | 0.900 | |
正己烷 | 0.050 | |
正庚烷 | 0.050 | |
产品规定/% (mol) | ||
塔顶产品(D) | 正戊烷 | 0.995 |
侧线产品(S) | 正己烷 | 0.995 |
塔底产品(B) | 正庚烷 | 0.995 |
相关费用 | 过程设计 | |||
---|---|---|---|---|
DWC | DWC-VRHP(FPH) | DWC-VRHP(FPH-PF) | DWC-VRHP(FPH-PF-MDC) | |
塔的投资费用/USD | 4223.58×103 | 3566.58×103 | 3358.68×103 | 3368.88×103 |
再沸器的投资费用/USD | 959.91×103 | 590.28×103 | 476.52×103 | 475.50×103 |
冷凝器的投资费用/USD | 806.31×103 | 476.82×103 | 372.42×103 | 370.80×103 |
冷却器的投资费用/USD | 0 | 101.04×103 | 124.74×103 | 127.65×103 |
压缩机的投资费用/USD | 0 | 1163.13×103 | 1675.32×103 | 1762.35×103 |
热交换器的投资费用/USD | 0 | 162.72×103 | 205.74×103 | 206.43×103 |
中间再沸器的投资费用/USD | 0 | 767.07×103 | 1081.71×103 | 1195.41×103 |
蒸汽费用/(USD/a) | 882.22×103 | 413.65×103 | 297.55×103 | 296.60×103 |
冷水费用/(USD/a) | 1243.57×103 | 606.66×103 | 452.87×103 | 452.95×103 |
电费/(USD/a) | 0 | 92.30×103 | 127.80×103 | 132.17×103 |
QTUC/kW | 9651.61 | 5213.44(-45.98%) | 4207.90(-56.40%) | 4230.12(-56.17%) |
CI/USD | 5989.80×103 | 6827.64×103(+13.99%) | 7295.13×103(+21.79%) | 7507.02×103(+25.33%) |
OC/(USD/a) | 2125.79×103 | 1112.61×103(-47.66%) | 878.22×103(-58.69%) | 881.72×103(-58.52%) |
TAC/(USD/a) | 4122.39×103 | 3388.49×103(-17.80%) | 3309.93×103(-19.71%) | 3384.06×103(-17.91%) |
βpbt/a | 3 | 3 | 3 | 3 |
Table 4 Results of all process designs studied in Example Ⅱ
相关费用 | 过程设计 | |||
---|---|---|---|---|
DWC | DWC-VRHP(FPH) | DWC-VRHP(FPH-PF) | DWC-VRHP(FPH-PF-MDC) | |
塔的投资费用/USD | 4223.58×103 | 3566.58×103 | 3358.68×103 | 3368.88×103 |
再沸器的投资费用/USD | 959.91×103 | 590.28×103 | 476.52×103 | 475.50×103 |
冷凝器的投资费用/USD | 806.31×103 | 476.82×103 | 372.42×103 | 370.80×103 |
冷却器的投资费用/USD | 0 | 101.04×103 | 124.74×103 | 127.65×103 |
压缩机的投资费用/USD | 0 | 1163.13×103 | 1675.32×103 | 1762.35×103 |
热交换器的投资费用/USD | 0 | 162.72×103 | 205.74×103 | 206.43×103 |
中间再沸器的投资费用/USD | 0 | 767.07×103 | 1081.71×103 | 1195.41×103 |
蒸汽费用/(USD/a) | 882.22×103 | 413.65×103 | 297.55×103 | 296.60×103 |
冷水费用/(USD/a) | 1243.57×103 | 606.66×103 | 452.87×103 | 452.95×103 |
电费/(USD/a) | 0 | 92.30×103 | 127.80×103 | 132.17×103 |
QTUC/kW | 9651.61 | 5213.44(-45.98%) | 4207.90(-56.40%) | 4230.12(-56.17%) |
CI/USD | 5989.80×103 | 6827.64×103(+13.99%) | 7295.13×103(+21.79%) | 7507.02×103(+25.33%) |
OC/(USD/a) | 2125.79×103 | 1112.61×103(-47.66%) | 878.22×103(-58.69%) | 881.72×103(-58.52%) |
TAC/(USD/a) | 4122.39×103 | 3388.49×103(-17.80%) | 3309.93×103(-19.71%) | 3384.06×103(-17.91%) |
βpbt/a | 3 | 3 | 3 | 3 |
1 | 杨剑, 沈本强, 蔺锡钰, 等. 分壁精馏塔分离芳烃的稳态及动态研究[J]. 化工学报, 2014, 65(10): 3993-4003. |
Yang J, Shen B Q, Lin X Y, et al. Steady state and dynamic control of divided-wall column for separating aromatics[J]. CIESC Journal, 2014, 65(10): 3993-4003. | |
2 | Ömer Y, Kiss A A, Kenig E Y. Dividing wall columns in chemical process industry: a review on current activities[J]. Separation and Purification Technology, 2011, 80(3): 403-417. |
3 | Xu L, Li M, Ge X, et al. Numerical simulation of dividing wall column with vapor recompression located at side product stage[J]. Chemical Engineering Research and Design, 2017, 120(Complete): 138-149. |
4 | Gao X, Ma Z, Ma J, et al. Application of three-vapor recompression heat-pump concepts to a dimethylformamide-water distillation column for energy savings[J]. Energy Technology, 2014, 2(3): 250-256. |
5 | Feng S, Lyu X, Ye Q, et al. Performance enhancement of reactive dividing-wall column via vapor recompression heat pump[J]. Industrial & Engineering Chemistry Research, 2016, 55(43): 11305-11314. |
6 | Li R, Ye Q, Suo X, et al. Improving the performance of heat pump-assisted azeotropic dividing wall distillation[J]. Industrial & Engineering Chemistry Research, 2016, 55(22): 6454-6464. |
7 | Tarjani A J, Toth A J, Nagy T, et al. Thermodynamic and exergy analysis of energy-integrated distillation technologies focusing on dividing-wall columns with upper and lower partitions[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3678-3684. |
8 | Yang S B, Chien I L. Rigorous design and optimization of methyl glycolate production process through reactive distillation combined with a middle dividing-wall column[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5215-5227 |
9 | Townsend D W, Brown K, Lic R. Dividing wall column with a heat pump: US8323457[P]. 2012. |
10 | Luo H, Bildea C S, Kiss A A. Novel heat-pump-assisted extractive distillation for bioethanol purification[J]. Industrial & Engineering Chemistry Research, 2015, 54(7): 2208-2213. |
11 | Aurangzeb M, Jana A K. Vapor recompression with interreboiler in a ternary dividing wall column: improving energy efficiency and savings, and economic performance[J]. Applied Thermal Engineering, 2019, 147: 1009-1023. |
12 | Navarro-Amoros M A, Ruiz-Femenia R, Caballero J A. A new technique for recovering energy in thermally coupled distillation using vapor recompression cycles[J]. AIChE Journal, 2013, 59(10): 3767-3781. |
13 | 李沐荣, 许良华, 辛春伟, 等. 热泵精馏隔壁塔分离宽沸程物系的模拟[J]. 化工学报, 2017, 68(5): 1906-1912. |
Li M R, Xu L H, Xin C W, et al. Simulation of vapor recompression assisted dividing wall column for wide boiling mixture separation[J]. CIESC Journal, 2017, 68(5): 1906-1912. | |
14 | Xia M, Yu B, Wang Q, et al. Design and control of extractive dividing-wall column for separating methylal-methanol mixture[J]. Industrial & Engineering Chemistry Research, 2016, 51(49): 16016-16033. |
15 | Yang A, Wei R, Sun S, et al. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8036-8056. |
16 | Wu Y C, Lee H Y, Huang H P, et al. Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems[J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1537-1552. |
17 | Li Y, Xia M, Li W, et al. Process assessment of heterogeneous azeotropic dividing-wall column for ethanol dehydration with cyclohexane as an entrainer: design and control[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8784-8801. |
18 | Chen M, Yu N, Cong L, et al. Design and control of a heat pump-assisted azeotropic dividing wall column for EDA/Water separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(34): 9770-9777. |
19 | Aurangzeb M, Jana A K. Pressure-swing dividing wall column with multiple binary azeotropes: improving energy efficiency and cost savings through vapor recompression[J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 4019-4032. |
20 | 朱怀工, 张荣檏, 马和旭,等. 隔板式反应精馏技术的研究进展[J]. 化学工业与工程, 2013, 30(6): 37-42. |
Zhu H G, Zhang R P, Ma H X, et al. Progress in technology of reactive dividing-wall column[J]. Chemical Industry & Engineering, 2013, 30(6): 37-42. | |
21 | Li L, Sun L, Yang D, et al. Reactive dividing wall column for hydrolysis of methyl acetate: design and control[J]. Chinese Journal of Chemical Engineering, 2016, 24(10): 1360-1368. |
22 | Sharma S, Patle D S, Gadhamsetti A P, et al. Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression[J]. Chemical Engineering and Processing: Process Intensification, 2018, 123: 204-213. |
23 | Wonjoon J, Heecheon L, Jong-in H, et al. Energy-efficient reactive dividing wall column for simultaneous esterification of n-amyl alcohol and n-hexanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8206-8219. |
24 | Li J, Zhang F, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191. |
25 | Kiss A A. Dividing-wall column[M]// Advanced Distillation Technologies: Design, Control and Applications. John Wiley & Sons, Ltd., 2013. |
26 | Lee J, Leyffer S. Mixed Integer Nonlinear Programming[M]. Springer, 2012. |
27 | Franke M B. Design of dividing‐wall columns by mixed‐integer nonlinear programming optimization[J]. Chemie Ingenieur Technik, 2017, 89(5): 582-597. |
28 | Yu J, Wang S J, Huang K, et al. Improving the performance of extractive dividing-wall columns with intermediate heating[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2709-2723. |
29 | Shi L, Huang K, Wang S J, et al. Application of vapor recompression to heterogeneous azeotropic dividing-wall distillation columns[J]. Industrial & Engineering Chemistry Research, 2015, 54(46): 11592-11609. |
30 | Seider W D, Seader J D, Lewin D R, et al. Product and Process Design Principles Synthesis, Analysis, and Evaluation[M]. NJ:Wiley, Hoboken, 2010. |
31 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill, 1988. |
32 | Turton R, Bailie R C, Whiting W B, et al. Analysis, Synthesis, and Design of Chemical Processes[M]. Boston: Pearson Education, 2009. |
[1] | Jie YANG, Jiangyu QI, Yong SHA. Simulation and analysis of reactive dividing-wall column for methylal production process [J]. CIESC Journal, 2019, 70(3): 960-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||