1 |
邓在军. 超高层建筑施工消防火灾安全风险评价[J]. 工程建设与设计, 2021(23): 206-208.
|
|
Deng Z J. Fire safety risk assessment of super high-rise building construction[J]. Construction & Design for Engineering, 2021(23): 206-208.
|
2 |
Khan R M, Bhuiyan S A M, Haque F M, et al. Effects of unsafe workplace practices on the fire safety performance of ready-made garments (RMG) buildings[J]. Safety Science, 2021, 144: 105470.
|
3 |
赵媚. 洁净气体与氟蛋白泡沫复合灭火性能的实验研究[D]. 合肥: 中国科学技术大学, 2015.
|
|
Zhao M. Experimental research on the extinguishing performance of the conjunction of clean gas and fluorine protein foam[D]. Hefei: University of Science and Technology of China, 2015.
|
4 |
乔建江, 吴越美. D类干粉灭火剂的灭火机理研究[J]. 安全与环境学报, 2020, 20(4): 1347-1353.
|
|
Qiao J J, Wu Y M. Probe into the fire-extinguishing mechanism and efficiency of D powder fire extinguishing media[J]. Journal of Safety and Environment, 2020, 20(4): 1347-1353.
|
5 |
孙绪坤, 柯巍, 韩腾奔, 等. 适用于变压器油火的泡沫灭火剂评价指标体系与方法[J]. 安全与环境工程, 2021, 28(6): 46-51.
|
|
Sun X K, Ke W, Han T B, et al. Evaluation index system and method of foam fire extinguishing agent suitable for transformer oil fire[J]. Safety and Environmental Engineering, 2021, 28(6): 46-51.
|
6 |
Rie D H, Lee J W, Kim S. Class B fire-extinguishing performance evaluation of a compressed air foam system at different air-to-aqueous foam solution mixing ratios[J]. Applied Sciences, 2016, 6(7): 191.
|
7 |
Zdankus T, Gylys M, Paukstaitis L, et al. Experimental investigation of heat transfer from a horizontal flat surface to aqueous foam flow[J]. International Journal of Heat and Mass Transfer, 2018, 123: 489-499.
|
8 |
贾海林, 陈南, 焦振营, 等. 碳氢/有机硅/低碳醇三元系泡沫及抑制煤自燃的效果分析[J]. 化工学报, 2022, 73(1): 470-479.
|
|
Jia H L, Chen N, Jiao Z Y, et al. Analysis of ternary foam of hydrocarbon/silicone/low carbon alcohol and the inhibition effect on coal spontaneous combustion[J]. CIESC Journal, 2022, 73(1): 470-479.
|
9 |
Liley J R, Penfold J, Thomas R K, et al. The performance of surfactant mixtures at low temperatures[J]. Journal of Colloid and Interface Science, 2019, 534: 64-71.
|
10 |
Kurnia I, Zhang G Y, Han X, et al. Zwitterionic-anionic surfactant mixture for chemical enhanced oil recovery without alkali[J]. Fuel, 2020, 259: 116236.
|
11 |
Li Y, Lai L, Mei P, et al. Surface properties and solubility enhancement of Gemini/conventional surfactant mixtures based on sulfonate Gemini surfactant[J]. Journal of Molecular Liquids, 2019, 276: 488-496.
|
12 |
Ferreira J, Mikhailovskaya A, Chenneviere A, et al. Interplay between bulk self-assembly, interfacial and foaming properties in a catanionic surfactant mixture of varying composition[J]. Soft Matter, 2017, 13(39): 7197-7206.
|
13 |
Wang C, Cao X L, Guo L L, et al. Effect of molecular structure of catanionic surfactant mixtures on their interfacial properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 601-612.
|
14 |
段佳林, 黄寅生, 王志强, 等. 有机硅对碳氢表面活性剂泡沫性能的影响[J]. 消防科学与技术, 2019, 38(10): 1447-1450.
|
|
Duan J L, Huang Y S, Wang Z Q, et al. Effect of organosilicon on the foam properties of hydrocarbon surfactant[J]. Fire Science and Technology, 2019, 38(10): 1447-1450.
|
15 |
Zhou Y T, Jin Y, Shen Y C, et al. Adjustable surface activity and wetting ability of anionic hydrocarbon and nonionic short-chain fluorocarbon surfactant mixtures: effects of Li+ and Mg2+ [J]. Journal of Molecular Liquids, 2022, 350: 118538.
|
16 |
Szymczyk K, Zdziennicka A, Jańczuk B. Properties of some nonionic fluorocarbon surfactants and their mixtures with hydrocarbon ones[J]. Advances in Colloid and Interface Science, 2021, 292: 102421.
|
17 |
Jiang N, Sheng Y J, Li C H, et al. Surface activity, foam properties and aggregation behavior of mixtures of short-chain fluorocarbon and hydrocarbon surfactants[J]. Journal of Molecular Liquids, 2018, 268: 249-255.
|
18 |
Hinnant K M, Giles S L, Smith E P, et al. Characterizing the role of fluorocarbon and hydrocarbon surfactants in firefighting-foam formulations for fire-suppression[J]. Fire Technology, 2020, 56(4): 1413-1441.
|
19 |
李远翔, 安娜, 乔建江. 氟碳-碳氢表面活性剂复配及其灭火性能[J]. 华东理工大学学报(自然科学版), 2015, 41(4): 502-507.
|
|
Li Y X, An N, Qiao J J. Mixed system of fluorocarbon-hydrocarbon surfactants and its fire extinguishing performance[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2015, 41(4): 502-507.
|
20 |
陆强. 当前我国泡沫灭火剂发展中的若干问题探讨[J]. 消防科学与技术, 2016, 35(9): 1280-1282.
|
|
Lu Q. Problems of foam fire extinguishing agent development in China[J]. Fire Science and Technology, 2016, 35(9): 1280-1282.
|
21 |
肖进新, 雷蕾, 高展, 等. 水成膜泡沫灭火剂标准GB17427—1998的研究[J]. 安全与环境学报, 2007, 7(2): 126-129.
|
|
Xiao J X, Lei L, Gao Z, et al. Discussion on the standard of aqueous film-forming foam extinguishing agent GB 17427—1998[J]. Journal of Safety and Environment, 2007, 7(2): 126-129.
|
22 |
赵晓光, 袁治程, 蔡文嫱, 等. 水成膜泡沫灭火剂对土壤环境的影响[J]. 消防科学与技术, 2019, 38(10): 1444-1446.
|
|
Zhao X G, Yuan Z C, Cai W Q, et al. Effect of aqueous film-forming foam fire extinguishing agent on soil environment[J]. Fire Science and Technology, 2019, 38(10): 1444-1446.
|
23 |
Dlugogorski B Z, Schaefer T H. Compatibility of aqueous film-forming foams (AFFF) with sea water[J]. Fire Safety Journal, 2021, 120: 103288.
|
24 |
吴楠, 曹青, 张连超. 有机硅/碳氢表面活性剂对水成膜灭火剂性能的影响[J]. 消防科学与技术, 2020, 39(7): 997-1000.
|
|
Wu N, Cao Q, Zhang L C. Effects of organosilicone/hydrocarbon surfactant on the properties of water-forming film extinguishing agent[J]. Fire Science and Technology, 2020, 39(7): 997-1000.
|
25 |
段佳林. 碳氢和有机硅表面活性剂复配体系为基础的水系灭火剂研究[D]. 南京: 南京理工大学, 2020.
|
|
Duan J L. Research on water-based fire-extinguishing agent based on hydrocarbon and silicone surfactant compounding system[D]. Nanjing: Nanjing University of Science and Technology, 2020.
|
26 |
盛友杰. 碳氢和有机硅表面活性剂复配体系为基剂的泡沫灭火剂研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
Sheng Y J. Investigation on fire-fighting foam based on mixture of hydrocarbon and silicone surfactants[D]. Hefei: University of Science and Technology of China, 2018.
|
27 |
张华海, 王悦琳, 王铁峰. 全浓度范围下醇类表面活性剂对气泡聚并影响的实验研究[J]. 化工学报, 2020, 71(9): 4161-4167.
|
|
Zhang H H, Wang Y L, Wang T F. Experimental study on effect of alcohol surfactants on bubble coalescence in full range of concentrations[J]. CIESC Journal, 2020, 71(9): 4161-4167.
|
28 |
蒋平, 郑玉飞, 陈文征, 等. 十二烷基硫酸钠-长链醇体系泡沫性能与表面参数关系研究[J]. 中国石油大学学报(自然科学版), 2014, 38(1): 143-147.
|
|
Jiang P, Zheng Y F, Chen W Z, et al. Investigation of relationship between foam performance and surface dilatational rheology of sodium dodecyl sulfate/alcohol system[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(1): 143-147.
|
29 |
张丁涌, 胡伟毅, 许辉, 等. 低碳醇对十二烷基硫酸钠溶液泡沫性能的影响[J]. 西安石油大学学报(自然科学版), 2015, 30(6): 93-96, 11-12.
|
|
Zhang D Y, Hu W Y, Xu H, et al. Influence of low carbon alcohols on the foaming property of lauryl sodium sulfate(SDS) solution[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(6): 93-96, 11-12.
|
30 |
王彦玲, 郑晶晶, 赵修太, 等. 低碳醇对氟碳与碳氢表面活性剂复配体系泡沫性能的影响[J]. 化工学报, 2010, 61(5): 1202-1207.
|
|
Wang Y L, Zheng J J, Zhao X T, et al. Effect of low carbon alcohols on foaming properties of fluorocarbon and hydrocarbon surfactant mixed system[J]. CIESC Journal, 2010, 61(5): 1202-1207.
|
31 |
Ding F X, Kang W D, Yan L, et al. Influence of gas-liquid ratio on the fire-extinguishing efficiency of compressed gas protein foam in diesel pool fire[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(3): 1465-1472.
|
32 |
吕志涛. 高效环保型水系灭火剂研究[D]. 南京: 南京理工大学, 2013.
|
|
Lyu Z T. Study on the efficient and environmental-friendlly water based extinguishing agent[D]. Nanjing: Nanjing University of Science and Technology, 2013.
|