CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 559-570.DOI: 10.11949/0438-1157.20221217
• Reviews and monographs • Previous Articles Next Articles
Yuxiao LI1,2(), Qingyue WANG2, Khak Ho LIM2(), Xiaohui LI3, Erlita MASTAN3, Bo PENG3(), Wenjun WANG1,2,4()
Received:
2022-09-06
Revised:
2022-11-18
Online:
2023-03-21
Published:
2023-02-05
Contact:
Khak Ho LIM, Bo PENG, Wenjun WANG
李雨萧1,2(), 王青月2, Ho Lim Khak2(), 李晓辉3, Erlita Mastan3, 彭博3(), 王文俊1,2,4()
通讯作者:
Ho Lim Khak,彭博,王文俊
作者简介:
李雨萧(1999 —)女,硕士研究生,liyuxiao@zju.edu.cn
基金资助:
CLC Number:
Yuxiao LI, Qingyue WANG, Khak Ho LIM, Xiaohui LI, Erlita MASTAN, Bo PENG, Wenjun WANG. Characterization technique for kinetic coefficients of free radical polymerization[J]. CIESC Journal, 2023, 74(2): 559-570.
李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570.
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
苯乙烯 | 本体,苯甲醇, N-甲基吡咯烷酮,苯甲醚,二甲基甲酰胺,异丁酸甲酯,甲苯,苯,二甲基亚砜,溴化苯,环己烷,均三甲基苯,二氯乙烷,乙腈,二氧化碳,丙烯腈 | [ |
4-甲基苯乙烯 | 本体 | [ |
4-氟苯乙烯 | 本体 | [ |
4-氯苯乙烯 | 本体 | [ |
4-溴代苯乙烯 | 本体 | [ |
4-甲氧基苯乙烯 | 本体 | [ |
丙烯腈 | 碳酸丙烯酯 | [ |
甲基丙烯酸甲酯 | 本体, 丙烯腈,苯甲醚,苯甲醇,苯,溴化苯,二氧化碳,环己烷,二甲基亚砜,二甲基甲酰胺,甲基乙基甲酮,乙醇,甲醇,均三甲基苯,异丁酸甲酯,N-甲基吡咯烷酮,甲苯,二氯乙烷 | [ |
甲基丙烯酸乙酯 | 本体 | [ |
甲基丙烯酸丁酯 | 本体,2-庚酮 | [ |
i-甲基丙烯酸丁酯 | 本体 | [ |
甲基丙烯酸异辛酯 | 本体 | [ |
i-甲基丙烯酸异癸酯 | 本体 | [ |
甲基丙烯酸月桂酯 | 本体,2-庚酮,乙酸辛酯 | [ |
甲基丙烯酸苄基酯 | 本体 | [ |
甲基丙烯酸环己酯 | 本体,2-庚酮,乙酸辛酯 | [ |
i-甲基丙烯酸冰片酯 | 本体 | [ |
甲基丙烯酸羟乙酯 | 本体 | [ |
甲基丙烯酸羟丙酯 | 本体 | [ |
甲基丙烯酸缩水甘油酯 | 本体 | [ |
甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷 | 本体 | [ |
甲基丙烯腈 | 本体 | [ |
非电离甲基丙烯酸 | 本体,甲醇,甲苯,四氢呋喃,乙酸,水 | [ |
丙烯酸甲酯 | 本体,链长依赖性链增长反应速率常数 | [ |
丙烯酸丁酯 | 本体,四氢呋喃,二氧化碳 | [ |
丙烯酸丁酯二聚物 | 本体 | [ |
2-乙基己基丙烯酸甲酯 | 本体 | [ |
丙烯酸十二烷基酯 | 本体 | [ |
N-异丙基丙烯酰胺 | 水 | [ |
丙烯酸 | 水 | [ |
丙烯酰胺 | 水 | [ |
乙酸乙烯酯 | 本体,叔丁醇,二氧化碳 | [ |
新癸酸乙烯基酯 | 本体 | [ |
氯丁二烯 | 本体 | [ |
1,3-丁二烯 | 氯苯 | [ |
甲基丙烯酸α-羟乙酯 | 苯,丁酮,氯苯,氯仿,环己烷,乙醇,二氯甲烷,乙酸乙酯,四氢呋喃,1-戊醇,丙醇,甲苯,二甲苯,乙苯 | [ |
N-乙烯基吡咯烷酮 | 水 | [ |
衣康酸二甲酯 | 水 | [ |
氨基甲酸羟丙酯丙烯酸酯 | 本体 | [ |
甲基丙烯酸亚乙基脲乙氧基酯 | 本体 | [ |
2-(乙基(苯基)氨基)甲基乙酸乙酯 | 本体 | [ |
2-正吗啉丙烯酸乙酯 | 本体 | [ |
2-(1-哌啶基)甲基丙烯酸乙酯 | 本体 | [ |
n-戊基丙烯酸甲酯 | 本体,甲苯 | [ |
苯乙烯和甲基丙烯酸缩水甘油酯共聚 | 本体 | [ |
甲基丙烯酸羟乙酯和甲基丙烯酸丁酯共聚 | 本体,二甲苯,二甲基甲酰胺,正丁醇 | [ |
丙烯酸甲酯和N-叔丁基丙烯酰胺共聚 | 乙醇水溶液 | [ |
Table 1 The monomers and related FRP condition with propagation rate coefficients measured by the PLP-SEC method
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
苯乙烯 | 本体,苯甲醇, N-甲基吡咯烷酮,苯甲醚,二甲基甲酰胺,异丁酸甲酯,甲苯,苯,二甲基亚砜,溴化苯,环己烷,均三甲基苯,二氯乙烷,乙腈,二氧化碳,丙烯腈 | [ |
4-甲基苯乙烯 | 本体 | [ |
4-氟苯乙烯 | 本体 | [ |
4-氯苯乙烯 | 本体 | [ |
4-溴代苯乙烯 | 本体 | [ |
4-甲氧基苯乙烯 | 本体 | [ |
丙烯腈 | 碳酸丙烯酯 | [ |
甲基丙烯酸甲酯 | 本体, 丙烯腈,苯甲醚,苯甲醇,苯,溴化苯,二氧化碳,环己烷,二甲基亚砜,二甲基甲酰胺,甲基乙基甲酮,乙醇,甲醇,均三甲基苯,异丁酸甲酯,N-甲基吡咯烷酮,甲苯,二氯乙烷 | [ |
甲基丙烯酸乙酯 | 本体 | [ |
甲基丙烯酸丁酯 | 本体,2-庚酮 | [ |
i-甲基丙烯酸丁酯 | 本体 | [ |
甲基丙烯酸异辛酯 | 本体 | [ |
i-甲基丙烯酸异癸酯 | 本体 | [ |
甲基丙烯酸月桂酯 | 本体,2-庚酮,乙酸辛酯 | [ |
甲基丙烯酸苄基酯 | 本体 | [ |
甲基丙烯酸环己酯 | 本体,2-庚酮,乙酸辛酯 | [ |
i-甲基丙烯酸冰片酯 | 本体 | [ |
甲基丙烯酸羟乙酯 | 本体 | [ |
甲基丙烯酸羟丙酯 | 本体 | [ |
甲基丙烯酸缩水甘油酯 | 本体 | [ |
甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷 | 本体 | [ |
甲基丙烯腈 | 本体 | [ |
非电离甲基丙烯酸 | 本体,甲醇,甲苯,四氢呋喃,乙酸,水 | [ |
丙烯酸甲酯 | 本体,链长依赖性链增长反应速率常数 | [ |
丙烯酸丁酯 | 本体,四氢呋喃,二氧化碳 | [ |
丙烯酸丁酯二聚物 | 本体 | [ |
2-乙基己基丙烯酸甲酯 | 本体 | [ |
丙烯酸十二烷基酯 | 本体 | [ |
N-异丙基丙烯酰胺 | 水 | [ |
丙烯酸 | 水 | [ |
丙烯酰胺 | 水 | [ |
乙酸乙烯酯 | 本体,叔丁醇,二氧化碳 | [ |
新癸酸乙烯基酯 | 本体 | [ |
氯丁二烯 | 本体 | [ |
1,3-丁二烯 | 氯苯 | [ |
甲基丙烯酸α-羟乙酯 | 苯,丁酮,氯苯,氯仿,环己烷,乙醇,二氯甲烷,乙酸乙酯,四氢呋喃,1-戊醇,丙醇,甲苯,二甲苯,乙苯 | [ |
N-乙烯基吡咯烷酮 | 水 | [ |
衣康酸二甲酯 | 水 | [ |
氨基甲酸羟丙酯丙烯酸酯 | 本体 | [ |
甲基丙烯酸亚乙基脲乙氧基酯 | 本体 | [ |
2-(乙基(苯基)氨基)甲基乙酸乙酯 | 本体 | [ |
2-正吗啉丙烯酸乙酯 | 本体 | [ |
2-(1-哌啶基)甲基丙烯酸乙酯 | 本体 | [ |
n-戊基丙烯酸甲酯 | 本体,甲苯 | [ |
苯乙烯和甲基丙烯酸缩水甘油酯共聚 | 本体 | [ |
甲基丙烯酸羟乙酯和甲基丙烯酸丁酯共聚 | 本体,二甲苯,二甲基甲酰胺,正丁醇 | [ |
丙烯酸甲酯和N-叔丁基丙烯酰胺共聚 | 乙醇水溶液 | [ |
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
衣康酸二丁酯 | 本体 | [ |
丙烯酸甲酯 | 本体,甲苯 | [ |
丙烯酸十二烷基酯 | 本体,甲苯 | [ |
甲基丙烯酸三甲氨基乙酯 | 本体,水 | [ |
丙烯酸三甲氨基乙酯 | 水 | [ |
苯乙烯 | 本体 | [ |
丙烯酰胺 | 水 | [ |
甲基丙烯酸钠酯 | 水 | [ |
Table 2 The monomers and related FRP condition with propagation rate coefficients measured by the SP-PLP-EPR method
单体 | 本体/溶液聚合 | 文献 |
---|---|---|
衣康酸二丁酯 | 本体 | [ |
丙烯酸甲酯 | 本体,甲苯 | [ |
丙烯酸十二烷基酯 | 本体,甲苯 | [ |
甲基丙烯酸三甲氨基乙酯 | 本体,水 | [ |
丙烯酸三甲氨基乙酯 | 水 | [ |
苯乙烯 | 本体 | [ |
丙烯酰胺 | 水 | [ |
甲基丙烯酸钠酯 | 水 | [ |
1 | Dietrich B. Origins and development of initiation of free radical polymerization processes[J]. International Journal of Polymer Science, 2009, 2009: 893234. |
2 | Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: features, developments, and perspectives[J]. Progress in Polymer Science, 2007, 32: 93-146. |
3 | 潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011. |
Pan Z R. Polymer Chemistry[M]. Beijing: Chemical Industry Press, 2011. | |
4 | Olaj O F, Bitai I, Hinkelmann F. The laser-flash-initiated polymerization as a tool of evaluating (individual) kinetic constants of free-radical polymerization(part 2): The direct determination of the rate constant of chain propagation[J]. Die Makromolekulare Chemie, 1987, 188: 1689-1702. |
5 | Kattner H, Drawe P, Buback M. Novel access to propagation rate coefficients of radical polymerization by the SP-PLP-EPR method[J]. Macromolecular Chemistry and Physics, 2015, 216(16): 1737-1745. |
6 | Kowollika C B, Buback M, Egorov M, et al. Critically evaluated termination rate coefficients for free-radical polymerization: experimental methods[J]. Progress in Polymer Science, 2005, 30(6): 605-643. |
7 | Kuchta F D, van Herk A M, German A L. Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed-laser polymerization[J]. Macromolecules, 2000, 33(10): 3641-3649. |
8 | Buback M, Gilbert R G, Russell G T, et al. Consistent values of rate parameters in free radical polymerization system(part Ⅱ): Outstanding dilemmas and recommendations[J]. Journal of Polymer Science, 1992, 30(5): 851-863. |
9 | O'Driscoll K F, Mahabadi H K. Spatially intermittent polymerization[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1976, 14(4): 869-881. |
10 | Buback M, Gilbert R G, Hutchinson R A, et al. Critically evaluated rate coefficients for free radical polymerization(part 1): Propagation rate coefficient for styrene[J]. Macromolecular Chemistry and Physics, 1995, 196(10): 3267-3280. |
11 | Beuermann S. Critically evaluated propagation rate coefficients in free radical polymerizations(part 3): Methacrylates with cyclic ester groups[J]. Pure and Applied Chemistry, 2003, 75(8): 1091-1096. |
12 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 4): Propagation rate coefficients for methacrylates with cyclic ester groups[J]. Macromolecular Chemistry and Physics, 2003, 204(10): 1338-1350. |
13 | Beuermann S, Buback M. Rate coefficients of free radical polymerization deduced from pulsed laser experiments[J]. Progress in Polymer Science, 2002, 27(2): 191-254. |
14 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 2): Propagation rate coefficients for methyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(5): 1545-1560. |
15 | Buback M, Schweer J. Conversion and chain-length dependence of rate coefficients in free-radical polymerization[J]. Zeitschrift für Physikalische Chemie, 1989, 161: 153-165. |
16 | Gilbert R G, Napper D H. The direct determination of kinetic parameters in emulsion polymerization systems[J]. Journal of Macromolecular Science, Part C: Polymer Reviews, 1983, 23(1): 127-186. |
17 | Bresler S E, Kozbekov E N, Shadrin V N. Study of radical polymerization by means of ESR(part 2): Homogeneous polymerization of methyl methacrylate and vinyl acetate[J]. Macromolecular Chemistry and Physics, 1974, 175(10): 2875-2880. |
18 | Kubota N, Kajiwara A, Zetterlund P B, et al. Determination of the propagation rate coefficient of vinly pivalate based on EPR quantification of the propagation radical concentration[J]. Macromolecular Chemistry and Physics, 2007, 208(22): 2403-2411. |
19 | Shen J C, Tian Y, Zeng Y G, et al. ESR study of the propagating rate constant and radical concentration of bulk polymerization of methyl methacrylate[J]. Die Makromolekulare Chemie, Rapid Communications, 1987, 8: 615-620. |
20 | Garrett R W, Hill D J T, O'Donnell J H, et al. Application of ESR spectroscopy to the kinetics of free radical polymerization of methyl methacrylate in bulk to high conversion[J]. Polymer Bulletin, 1989, 22: 611-616. |
21 | Carswell T G, Hill D J T, Hunter D S, et al. Simultaneous measurement by ESR spectroscopy of monomer conversion and radical concentration during polymerization for determination of kinetic parameters[J]. European Polymer Journal, 1990, 26(15): 541-544. |
22 | Kamachi M J. Search for highly resolved electron spin resonance spectra of the transient radical in radical polymerization[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2002, 40(3): 269-285. |
23 | Zammit M D, Coote M L, Davis T P, et al. Effect of the ester-side-chain on the propagation kinetics of alkyl methacrylates—an entropic or enthalpic effect?[J]. Macromolecules, 1998, 31(4): 955-963. |
24 | Zammit M D, Davis T P, Willett G D, et al. The effect of solvent on the homo-propagation rate coefficients of styrene and methyl methacrylate[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1997, 35(11): 2311-2321. |
25 | van Herk A M, Manders B G, Canelas D A, et al. Propagation rate coefficients of styrene and methyl methacrylate in supercritical CO2 [J]. Macromolecules, 1997, 30(16): 4780-4782. |
26 | Olaj O F, Bitai I S. Solvent effects on the rate constant of chain propagation in free radical polymerization[J]. Monatshefte für Chemie/Chemical Monthly, 1999, 130: 731-740. |
27 | O'Driscoll K F, Monteiro M J, Klumperman B. The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate[J]. Journal of Polymer Science. Polymer Chemistry Edition, 2000, 35(3): 515-520. |
28 | Aleksandrov H P, Genkin V N, Kitai M S, et al. Kinetics of laser-initiated polymerization and molecular-weight distribution of the resultant polymer[J]. Soviet Journal of Quantum Electronics, 1977, 7(5): 547-550. |
29 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free radical polymerization(part 2): Propagation rate coefficients for methyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(5):1545-1560. |
30 | Beuermann S, Buback M, Davis T P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 3): Propagation rate coefficients for alkyl methacrylates[J]. Macromolecular Chemistry and Physics, 2000, 201: 1355-1364. |
31 | Asua J M, Beuermann S, Buback M, et al. Critically evaluated rate coefficients for free-radical polymerization(part 5): Propagation rate coefficient for butyl acrylate[J]. Macromolecular Chemistry and Physics, 2004, 205(16): 2151-2160. |
32 | Beuermann S, Buback M, Hesse P, et al. Critically evaluated rate coefficients for free-radical polymerization(part 6): Propagation rate coefficient of methacrylic acid in aqueous solution[J]. Pure and Applied Chemistry, 2007, 79(8): 1463-1469. |
33 | Hutchinson R A, Aronson M T, Richards J R. Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients[J]. Macromolecules, 1993, 26(24): 6410-6415. |
34 | Drawe P, Buback M. The PLP-SEC method: perspectives and limitations[J]. Macromolecular Theory and Simulationa, 2016, 25(1): 74-84. |
35 | Beuermann S, Paquet D A, McMinn J, et al. Determination of free-radical propagation rate coefficients of butyl, 2-ethylhexyl, and dodecyl acrylates by pulsed-laser polymerization[J]. Macromolecules, 1996, 29(12): 4206-4215. |
36 | Sarnecki J, Schweer J. Conditions for the determination of precise and accurate free-radical propagation rate coefficients from pulsed-laser-made polymer[J]. Macromolecules, 1995, 28(12): 4080-4088. |
37 | Deibert S, Bandermann F, Schweer J, et al. Propagation rate coefficient of free radical polymerization of 1,3-butadiene[J]. Die Makromolekulare Chemie, Rapid Communications, 1992, 13(7): 351-355. |
38 | Lacík I, Beuermann S, Buback M. Aqueous phase size exclusion chromatography used for PLP-SEC studies into free radical propagation rate of acrylic acid in aqueous solution[J]. Macromolecules, 2001, 34(18): 6224-6228. |
39 | Kuchta F D, van Herk A M, German A L. Propagation kinetics of acrylic and methacrylic acid in water and organic solvents studied by pulsed laser polymerization[J]. Macromolecules, 2000, 33(10): 3641-3649. |
40 | Beuermann S, Buback M, Hesse P, et al. Free radical propagation rate coefficient of nonionized methacrylic acid in aqueous solution from low monomer concentrations to bulk polymerization[J]. Macromolecules, 2006, 39(1): 184-193. |
41 | Lacík I, Chovancova A, Uhelska L, et al. PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution[J]. Macromolecules, 2016, 49(9): 3244-3253. |
42 | Meiser W, Buback M, Ries O, et al. EPR study into cross-termination and fragmentation with the phenylethyl-phenylethyl dithiobenzoate RAFT model system[J]. Macromolecular Chemistry and Physics, 2013, 214(8): 924-933. |
43 | Lacík I, Beuermann S, Buback M. PLP-SEC study into the free-radical propagation rate coefficients of partially and fully ionized acrylic acid in aqueous solution[J]. Macromolecular Chemistry and Physics, 2004, 205(8): 1080-1087. |
44 | Beuermann S, Buback M, Hesse P, et al. Propagation kinetics of free-radical methacrylic acid polymerization in aqueous solution. The effect of concentration and degree of ionization[J]. Macromolecular Symposia, 2007, 248(1): 23-32. |
45 | Buback M. Propagation kinetics in radical polymerization studied via pulsed laser techniques[J]. Macromolecular Symposia, 2009, 275/276(1): 90-101. |
46 | Coote M L, Davis T P. Propagation kinetics of para-subsitituted styrenes: a test of the applicability of the Hammett relationship to free radical polymerization[J]. Macromolecules, 1999, 32(13): 4290-4298. |
47 | Coote M L, Davis T P. Propagation rate coefficients for styrene solution polymerization in dimethyl formamide and acetonitrile[J]. European Polymer Journal, 2000, 36(11): 2423-2427. |
48 | Junkers T, Koo S P S, Barner-Kowollik C. Determination of the propagation rate coefficient of acrylonitrile[J]. Polymer Chemistry, 2010, 1(4): 438-441. |
49 | Beuermann S, Buback M, Russell G T. Variation with pressure of the propagation rate coefficient in free radical polymerization of methyl methacrylate[J]. Macromolecular Rapid Communications, 1994, 15(4): 351-355. |
50 | Beuermann S, Buback M, Russell G T. Rate of propagation in free radical polymerization of methyl methacrylate in solution[J]. Macromolecular Rapid Communications, 1994, 15(8): 647-653. |
51 | Quadir M A, DeSimone J M, van Herk A M, et al. Pulsed-laser polymerization of methyl methacrylate in liquid and supercritical carbon dioxide[J]. Macromolecules, 1998, 31(19): 6481-6485. |
52 | Beuermann S, Buback M, Schmaltz C, et al. Determination of free radical propagation rate coefficients for methyl methacrylate and butyl acrylate homopolymerizations in fluid CO2 [J]. Macromolecular Chemistry and Physics, 1998, 199(6): 1209-1216. |
53 | Morrison B R, Piton M C, Winnik M A, et al. Solvent effects on the propagation rate coefficient for free radical polymerization[J]. Macromolecules, 1993, 26: 4368-4372. |
54 | Hutchinson R A, Paquet D A, McMinn J H, et al. Measurement of free radical propagation rate coefficients for ethyl, butyl and isobutyl methacrylates by pulsed laser polymerization[J]. Macromolecules, 1995, 28(11): 4023-4028. |
55 | Buback M, Geers U, Kurz C H, et al. Propagation rate coefficients in free radical homopolymerizations of butyl methacrylate and dodecyl methacrylate[J]. Macromolecular Chemistry and Physics, 1997, 198(11): 3451-3464. |
56 | Hutchinson R A, Paquet D A, Beuermann S, et al. Investigation of methacrylate free radical depropagation kinetics by pulsed laser polymerization[J]. Industrial & Engineering Chemistry Research, 1998, 37(9): 3567-3574. |
57 | Hutchinson R A, Beuermann S, Paquet D A, et al. Determination of free radical propagation rate coefficients for alkyl methacrylates by pulsed laser polymerization[J]. Macromolecules, 1997, 30(12): 3490-3493. |
58 | Hutchinson R A, Beuermann S, Paquet D A, et al. Determination of free radical propagation rate coefficients for cycloalkyl and functional methacrylates by pulsed laser polymerization[J]. Macromolecules, 1998, 31(5): 1542-1547. |
59 | Buback M, Kurz C H. Free radical propagation rate coefficients for cyclohexyl methacrylate, glycidyl methacrylate and 2-hydroxyethyl methacrylate homopolymerization[J]. Macromolecular Chemistry and Physics, 1998, 199: 2301-2310. |
60 | Wang W, Hutchinson R A. PLP/SEC/NMR study of free radical copolymerization of styrene and glycidyl methacrylate[J]. Macromolecules, 2008, 41(23): 9011-9018. |
61 | Muratore L M, Coote M L, Davis T P. Determination of the propagation rate coefficient for 3-[tris(trimethylsilyloxy)silyl] propyl methacrylate by pulsed-laser polymerization[J]. Polymer, 2000, 41(4): 1441-1447. |
62 | Shipp D A, Smith T A, Solomon D H, et al. Evaluation of propagation rate constants for the free radical polymerization of methacrylonitrile by pulsed laser photolysis[J]. Macromolecular Rapid Communications, 1995, 16: 837-844. |
63 | Buback M, Kurz C H, Schmaltz C. Pressure dependence of propagation rate coefficients in free radical homopolymerizations of methyl acrylate and dodecyl acrylate[J]. Macromolecular Rapid Communications, 1998, 199(8): 1721-1727. |
64 | Nikitin A N, Dusicka E, Lacík L, et al. Chain-length dependence of the propagation rate coefficient for methyl acrylate polymerization at 25 degrees C investigated by the PLP-SEC method[J]. Polymer Chemistry, 2022, 13(21): 3053-3062. |
65 | Beuermann S, Paquet D A, McMinn J, et al. Determination of free-radical propagation rate coefficients of butyl, 2-ethylhexyl, and dodecyl acrylates by pulsed-laser polymerization[J]. Macromolecules, 1996, 29(12): 4206-4215. |
66 | Lyons R A, Hutovic J, Piton M C, et al. Pulsed laser polymerization measurements of the propagation rate coefficient for butyl acrylate[J]. Macromolecules, 1996, 29(6): 1918-1927. |
67 | Beuermann S, Buback M, Schmaltz C. Pressure and temperature dependence of butyl acrylate propagation rate coefficients in fluid CO2 [J]. Macromolecules, 1998, 31(23): 8069-8074. |
68 | Nikitin A N, Hutchinson R A, Buback M, et al. Determination of intramolecular chain transfer and midchain radical propagation rate coefficients for butyl acrylate by pulsed laser polymerization[J]. Macromolecules, 2007, 40(24): 8631-8641. |
69 | Buback M, Junkers T, Muller M. Free radical propagation and termination kinetics of the butyl acrylate dimer studied by pulsed laser polymerization techniques[J]. Polymer, 2009, 50(14): 3111-3118. |
70 | Ganachaud F, Balic R, Monteiro M J, et al. Propagation rate coefficient of poly(N-isopropylacrylamide) in water below its lower critical solution temperature[J]. Macromolecules, 2000, 33(23): 8589-8596. |
71 | Hutchinson R A, Richards J R, Aronson M T. Determination of propagation rate coefficients by pulsed-laser polymerization for systems with rapid chain growth: vinyl acetate[J]. Macromolecules, 1994, 27(16): 4530-4537. |
72 | Hutchinson R A, Paquet D A, McMinn J H. The application of pulsed-laser methods for the determination of free-radical polymerization rate coefficients[C]//5th International Workshop on Polymer Reaction Engineering (DECHEMA Monographs 131). VCH Publishers, 1995. |
73 | Beuermann S, Buback M, Nelke D. Pressure dependence of the propagation rate coefficient k p for vinyl acetate polymerizations in bulk and in solution of fluid CO2 [J]. Macromolecules, 2001, 34(19): 6637-6640. |
74 | Balic R, Gilbert R G, Zammit M D, et al. Propagation rate coefficient of vinyl neo-decanoate by pulsed laser polymerization[J]. Macromolecules, 1997, 30(13): 3775-3780. |
75 | Morrison D A, Davis T P. Studies on the propagation reaction in the free radical polymerization of ethyl α-hydroxymethacrylate[J]. Macromolec Chemistry and Physics, 2000, 201(16): 2128-2137. |
76 | Stach M, Lacík I, Jr D C, et al. Propagation rate coefficient for free radical polymerization of N-vinyl pyrrolidone in aqueous solution obtained by PLP-SEC[J]. Macromolecules, 2008, 41: 5174-5185. |
77 | Yee L H, Coote M L, Chaplin R P, et al. Determination of propagation rate coefficients for an α-substituted acrylic ester: pulsed laser polymerization of dimethyl itaconate[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38(12): 2192-2200. |
78 | Haehnel A P, Stach M, Chpvancova A, et al. Methacrylic monomers with heteroatom containing ester side chains: a systematic PLP-SEC and polymerization study[J]. Polymer Chemistry, 2014, 5: 862-873. |
79 | Kockler K B, Fleischhaker F, Barner-Kowollik C. Investigating the propagation kinetics of a novel class of nitrogen-containing methacrylates via PLP-SEC[J]. Polymer Chemistry, 2016, 7: 4342-4351. |
80 | Nitschke A, Riemann L, Kollenbach L, et al. Investigation into the kinetics of n-pentyl methacylate radical polymerization[J]. Macromolec Chemistry and Physics, 2020, 221: 1900345. |
81 | Liang K, Rooney T R, Hutchinson R A. Solvent effects on kinetics of 2-hydroxyethyl methacrylate semibatch radical copolymerization[J]. Industrial & Engineering Chemistry Research, 2014, 53(18): 7296-7304. |
82 | Refai I, Agboluaje M, Hutchinson R A. Radical copolymerization kinetics of N-tert-butyl acrylamide and methyl acrylate in polar media[J]. Polymer Chemistry, 2022, 13: 2036-2047. |
83 | Buback M, Hippler H, Schweer J, et al. Time-resolved study of laser-induced high-pressure ethylene polymerization[J]. Die Makromolekulare Chemie, Rapid Communications, 1986, 7(5): 261-265. |
84 | Buback M, Egorov M, Junkers T, et al. Free radical termination kinetics studied using a novel SP-PLP-ESR technique[J]. Macromolecular Rapid Communications, 2004, 25(10): 1004-1009. |
85 | Yamada B, Westmoreland D G, Kobatake S, et al. ESR spectroscopic studies of radical polymerization[J]. Progress in Polymer Science, 1999, 24(4): 565-630. |
86 | Buback M, Scheroeder H, Kattner H. Detailed kinetic and mechanistic insight into radical polymerization by spectroscopic techniques[J]. Macromolecules, 2016, 49(9): 3193-3213. |
87 | Kattner H, Buback M. Propagation and chain-length-dependent termination rate coefficients deduced from a single SP-PLP-EPR experiment[J]. Macromolecules, 2016, 49(10): 3716-3722. |
88 | Kattner H, Buback M. Termination, propagation, and transfer kinetics of midchain radicals in methyl acrylate and dodecyl acrylate homopolymerization[J]. Macromolecules, 2018, 51(1): 25-33. |
89 | Barth J, Buback M, Hesse P, et al. EPR analysis of n-butyl acrylate radical polymerization[J]. Macromolecular Rapid Communications, 2009, 30(23): 1969-1974. |
90 | Moad G, Rizzardo E, Thang S H. Living radical polymerization by the RAFT process[J]. Australian Journal of Chemistry, 2005, 58(6): 379-410. |
91 | Sidoruk A, Buback M, Meiser W. Kinetics of dithiobenzoate-mediated methyl methacrylate polymerization[J]. Macromolecular Chemical and Physics, 2013, 214(15): 1738-1748. |
92 | Meiser W, Buback M, Sidoruk A. EPR Investigations into the kinetics of trithiocarbonate-mediated RAFT-polymerization of butyl acrylate[J]. Macromolecular Chemical and Physics, 2013, 214(18): 2108-2114. |
93 | Meiser W, Buback M. Assessing the RAFT equilibrium constant via model systems: an EPR study[J]. Macromolecular Rapid Communications, 2011, 32(18): 1490-1494. |
94 | Meiser W, Barth J, Buback M, et al. EPR measurement of fragmentation kinetics in dithiobenzoate-mediated RAFT polymerization[J]. Macromolecules, 2011, 44(8): 2474-2480. |
95 | Zhou Y N, Li J J, Wang T T, et al. Precision polymer synthesis by controlled radical polymerization: fusing the progress from polymer chemistry and reaction engineering[J]. Progress in Polymer Science, 2022, 130: 101555. |
96 | Soerensen N, Barth J, Buback M, et al. SP-PLP-EPR measurement of ATRP deactivation rate[J]. Macromolecules, 2012, 45(9): 3797-3801. |
97 | Schroeder H, Buback M. SP-PLP-EPR measurement of iron-mediated radical termination in ATRP[J]. Macromolecules, 2014, 47(19): 6645-6651. |
98 | Schroeder H, Buback M. SP-PLP-EPR measurement of iron-mediated ATRP deactivation rate[J]. Macromolecules, 2015, 48(17): 6108-6113. |
99 | Kattner H. Radical polymerization kinetics of non-ionized and fully-ionized monomers studied by pulsed-laser EPR[D]. Göttingen: der Georg-August Universität, 2016. |
100 | Schrooten J. Investigation into the propagation and termination kinetics of the radical polymerization of polar monomers in aqueous solution[D]. Göttingen: der Georg-August-Universität, 2012. |
101 | Barth J, Buback M, Hesse P, et al. Chain-length-dependent termination in n-butyl methacrylate and tert-butyl methacrylate bulk homopolymerizations studied via SP-PLP-ESR[J]. Macromolecules, 2009, 42(2): 481-488. |
102 | Kattner H, Buback M. Chain length dependent termination of styrene bulk polymerization up to high degrees of monomer conversion[J]. Macromolecules, 2017, 50(14): 5308-5314. |
103 | Kattner H, Drawe P, Buback M. Chain length dependent termination of sodium methacrylate polymerization in aqueous solution studied by SP-PLP-EPR[J]. Macromolecules, 2017, 50(4): 1386-1393. |
104 | Kattner H, Buback M. Chain length dependent termination of styrene bulk homopolymerization studied by SP-PLP-EPR[J]. Macromolecules, 2015, 48(2): 309-315. |
105 | Kattner H, Buback M. Detailed investigations into radical polymerization kinetics by highly time-resolved SP-PLP-EPR[J]. Macromolecular Symposia, 2013, 333(1): 11-23. |
106 | Smith G B, Russell G T, Heuts J P A. Termination in dilute-solution free radical polymerization: a composite model[J]. Macromolecular Theory and Simulations, 2003, 12(5): 299-314. |
107 | Barth J, Buback M, Russell G T, et al. Chain length dependent termination in radical polymerization of acrylates[J]. Macromolecular Chemistry and Physics, 2011, 212(13): 1366-1378. |
108 | Johnston-Hall G, Theis A, Monteiro J. Accessing chain length dependent termination rate coefficients of methyl methacrylate (MMA) via the reversible addition fragmentation chain transfer (RAFT) process[J]. Macromolecular Chemistry and Physics, 2005, 206(20): 2047-2053. |
109 | Johnston H, Monteiro M J. Bimolecular radical termination: new perspectives and insight[J]. Journal of Polymer Science, Part A: Polymer chemistry, 2008, 46(10): 3155-3173. |
110 | Johnston-Hall, Monteiro M J. Diffusion controlled termination of linear polystyrene radicals in linear, 4-arm, and 6-arm star polymer matrices in dilute, semidilute, and concentrated solution conditions[J]. Macromolecules, 2008, 41(3): 717-736. |
111 | Friedman B, O'Shaughnessy B. Kinetics of intermolecular reactions in dilute polymer solutions and unentangled melts[J]. Macromolecules, 1993, 26(21): 5726-5739. |
112 | Friedman B, O'Shaughnessy B. Theory of intramolecular reactions in polymeric liquids[J]. Macromolecules, 1993, 26(18): 4888-4898. |
113 | Khokhlov A R. Influence of excluded volume effect on the rates of chemically controlled polymer-polymer reactions[J]. Die Makromolekulare Chemie, Rapid Communications, 1981, 2: 633-636. |
114 | Boukaftane C, van Herk A M. PLP and MALDI-ToF determination of propagation rate coefficients of fast-polymerizing acrylates with heterocyclic side-chains: tetrahydrofurfuryl acrylate and (R)-alpha-acryloyloxy-beta, beta-dimethyl-gamma-butyrolactone[J]. Macromolecular Chemistry and Physics, 2011, 212(1): 96-101. |
115 | Shi Y J, Yu M X, Liu J, et al. Quantitative structure-property relationship model for predicting the propagation rate coefficient in free radical polymerization[J]. Macromolecules, 2022, 55(21): 9397-9410. |
[1] | WU Nie, WAN Liying, LI Aimei, XIAO Chunping. Shape memory properties of mesogen-jacketed liquid crystalline polymers based on vinylterephthalic acid [J]. CIESC Journal, 2018, 69(5): 2282-2289. |
[2] | REN Qiang, WANG Lili, LI Jian, DENG Jian, FANG Jianbo, WANG Chenyi, CHEN Jianhai . Preparation of amphiphilic acrylic block copolymer by DPE method and application as pigment dispersant [J]. CIESC Journal, 2014, 65(6): 2378-2385. |
[3] | LUO Zhihua,XIE Fuqiang,XIA Bairu,FU Zhifeng. Synthesis of methyl methacrylate-styrene block copolymer by using polyfunctional chain-transfer agent via conventional free radical polymerization [J]. , 2009, 28(9): 1617-. |
[4] | ZHAO Yangfeng,MA Lifu,HUANG Qigu,YANG Wantai. Progress of synthesis of biomedical polymer materials via living/controlled polymerization [J]. , 2009, 28(7): 1202-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 388
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||