CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1145-1160.DOI: 10.11949/0438-1157.20221609
• Separation engineering • Previous Articles Next Articles
Xuanjun WU1(), Chao WANG1, Zijian CAO1, Weiquan CAI2()
Received:
2022-12-13
Revised:
2023-01-26
Online:
2023-04-19
Published:
2023-03-05
Contact:
Weiquan CAI
通讯作者:
蔡卫权
作者简介:
吴选军(1972—),男,博士,副教授,wuxuanjun@whut.edu.cn
基金资助:
CLC Number:
Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information[J]. CIESC Journal, 2023, 74(3): 1145-1160.
吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160.
Add to citation manager EndNote|Ris|BibTeX
方程 | 公式 |
---|---|
质量平衡方程 | |
LDF传质方程 | |
DSLangmuir方程 | |
初始条件与边界条件 | |
无量纲中间变量 |
Table 1 Dimensionless partial differential equations for gas adsorptions in fixed bed
方程 | 公式 |
---|---|
质量平衡方程 | |
LDF传质方程 | |
DSLangmuir方程 | |
初始条件与边界条件 | |
无量纲中间变量 |
MOFs | CO2 | N2 | ||||
---|---|---|---|---|---|---|
qsat/(mol/kg) | b0/Pa-1 | -ΔH(kJ/mol) | qsat/(mol/kg) | b0/Pa-1 | -ΔH/(kJ/mol) | |
UTSA-16 | 1.406 | 3.257×10-11 | 54.38 | 3.419 | 1.972×10-9 | 13.79 |
4.077 | 1.891×10-5 | 21.45② | —③ | —③ | —③ | |
CALF-20 | 2.086 | 7.379×10-8① | 42.16 | 2.457 | 1.562×10-8① | 18.78 |
2.525 | 1.105×10-8① | 34.74② | —③ | —③ | —③ |
Table 2 The fitting parameters for DSLangmuir isotherms of single component gas adsorbed in various MOFs
MOFs | CO2 | N2 | ||||
---|---|---|---|---|---|---|
qsat/(mol/kg) | b0/Pa-1 | -ΔH(kJ/mol) | qsat/(mol/kg) | b0/Pa-1 | -ΔH/(kJ/mol) | |
UTSA-16 | 1.406 | 3.257×10-11 | 54.38 | 3.419 | 1.972×10-9 | 13.79 |
4.077 | 1.891×10-5 | 21.45② | —③ | —③ | —③ | |
CALF-20 | 2.086 | 7.379×10-8① | 42.16 | 2.457 | 1.562×10-8① | 18.78 |
2.525 | 1.105×10-8① | 34.74② | —③ | —③ | —③ |
Fig.7 Isotherms of gases adsorbed in various MOF materials (solid points refer to the experimental data from the references[33, 50-51] and solid lines refer to dual-site Langmuir fitting curves)
MOF | 参数 | 符号/单位 | 取值 | MOF | 参数 | 符号/单位 | 取值 |
---|---|---|---|---|---|---|---|
UTSA-16 | 床高 | L/m | 1.0 | CALF-20 | 床高 | L/m | 0.0786 |
空隙率 | εb | 0.37 | 空隙率 | εb | 0.40 | ||
内径 | din/m | 0.364 | 内径 | din/m | 0.0282 | ||
密度 | ρs/(kg/m3) | 1659 | 密度 | ρs/(kg/m3) | 570 | ||
黏度 | μ/(kg/(m·s)) | 1.72×10-5 | 黏度 | μ/(kg/(m·s)) | 1.812×10-5 | ||
扩散系数 | Dax/(m/s2) | 8.091×10-4 | 扩散系数 | Dax/(m/s2) | 1.496×10-5 | ||
传质系数 | 0.1631 | 传质系数 | 0.1598 | ||||
0.2044 | 0.1973 |
Table 3 The operation parameters for binary component adsorption fixed bed packed with various MOFs
MOF | 参数 | 符号/单位 | 取值 | MOF | 参数 | 符号/单位 | 取值 |
---|---|---|---|---|---|---|---|
UTSA-16 | 床高 | L/m | 1.0 | CALF-20 | 床高 | L/m | 0.0786 |
空隙率 | εb | 0.37 | 空隙率 | εb | 0.40 | ||
内径 | din/m | 0.364 | 内径 | din/m | 0.0282 | ||
密度 | ρs/(kg/m3) | 1659 | 密度 | ρs/(kg/m3) | 570 | ||
黏度 | μ/(kg/(m·s)) | 1.72×10-5 | 黏度 | μ/(kg/(m·s)) | 1.812×10-5 | ||
扩散系数 | Dax/(m/s2) | 8.091×10-4 | 扩散系数 | Dax/(m/s2) | 1.496×10-5 | ||
传质系数 | 0.1631 | 传质系数 | 0.1598 | ||||
0.2044 | 0.1973 |
1 | Junior M J C, Wang Y G, Wu X J, et al. Computational screening of metal-organic frameworks with open copper sites for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27320-27330. |
2 | Wu X J, Wang Y G, Cai Z J, et al. Revealing enhancement mechanism of volumetric hydrogen storage capacity of nano-porous frameworks by molecular simulation[J]. Chemical Engineering Science, 2020, 226: 115837. |
3 | Boyd P G, Chidambaram A, García-Díez E, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
4 | Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129. |
5 | Ben T, Ren H, Ma S Q, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie, 2009, 48(50): 9457-9460. |
6 | El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
7 | 王洒, 温怡静, 郭丹煜, 等. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738. |
Wang S, Wen Y J, Guo D Y, et al. Tuning secondary building unit of zirconium-based MOF for enhanced separation of light hydrocarbons[J]. CIESC Journal, 2022, 73(2): 730-738. | |
8 | Zhao Y B, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals[J]. Journal of the American Chemical Society, 2015, 137(6): 2199-2202. |
9 | Yao Z P, Sánchez-Lengeling B, Bobbitt N S, et al. Inverse design of nanoporous crystalline reticular materials with deep generative models[J]. Nature Machine Intelligence, 2021, 3(1): 76-86. |
10 | Wilmer C E, Leaf M, Lee C Y, et al. Large-scale screening of hypothetical metal-organic frameworks[J]. Nature Chemistry, 2012, 4(2): 83-89. |
11 | Gómez-Gualdrón D A, Colón Y J, Zhang X, et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energy & Environmental Science, 2016, 9(10): 3279-3289. |
12 | Lan Y S, Han X H, Tong M M, et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis[J]. Nature Communications, 2018, 9: 5274. |
13 | 卞磊, 李炜, 魏振振, 等. 基于高通量计算筛选的金属有机骨架材料甲醛吸附性能[J]. 化学学报, 2018, 76(4): 303-310. |
Bian L, Li W, Wei Z Z, et al. Formaldehyde adsorption performance of selected metal-organic frameworks from high-throughput computational screening[J]. Acta Chimica Sinica, 2018, 76(4): 303-310. | |
14 | Altintas C, Avci G, Daglar H, et al. Computer simulations of 4240 MOF membranes for H2/CH4 separations: insights into structure-performance relations[J]. Journal of Materials Chemistry A, 2018, 6(14): 5836-5847. |
15 | 蔡铖智, 李丽凤, 邓小梅, 等. 基于机器学习和高通量计算筛选金属有机框架的甲烷/乙烷/丙烷分离性能[J]. 化学学报, 2020, 78(5): 427-436. |
Cai C Z, Li L F, Deng X M, et al. Machine learning and high-throughput computational screening of metal-organic framework for separation of methane/ethane/propane[J]. Acta Chimica Sinica, 2020, 78(5): 427-436. | |
16 | Wu X J, Li L, Fang T G, et al. Effect of an acetylene bond on hydrogen adsorption in diamond-like carbon allotropes: from first principles to atomic simulation[J]. Physical Chemistry Chemical Physics, 2017, 19(13): 9261-9269. |
17 | Wu X J, Wang R, Yang H J, et al. Ultrahigh hydrogen storage capacity of novel porous aromatic frameworks[J]. Journal of Materials Chemistry A, 2015, 3(20): 10724-10729. |
18 | Lu X Y, Wu Y J, Wu X J, et al. High-throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network[J]. AIChE Journal, 2022, 68(1): e17433. |
19 | Su Y, Wang Z H, Jin S M, et al. An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures[J]. AIChE Journal, 2019, 65(9): e16678. |
20 | Wen H Q, Su Y, Wang Z H, et al. A systematic modeling methodology of deep neural network-based structure-property relationship for rapid and reliable prediction on flashpoints[J]. AIChE Journal, 2022, 68(1): e17402. |
21 | Jablonka K M, Ongari D, Moosavi S M, et al. Big-data science in porous materials: materials genomics and machine learning[J]. Chemical Reviews, 2020, 120(16): 8066-8129. |
22 | Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
23 | Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
24 | Lu L, Meng X H, Mao Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. |
25 | Mao Z P, Jagtap A D, Karniadakis G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. |
26 | 陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503. |
Lu Z B, Qu J H, Liu H, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503. | |
27 | Razakh T M, Wang B B, Jackson S, et al. PND: physics-informed neural-network software for molecular dynamics applications[J]. SoftwareX, 2021, 15: 100789. |
28 | Yang L, Meng X H, Karniadakis G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913. |
29 | Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367(6481): 1026-1030. |
30 | Lu L, Pestourie R, Yao W J, et al. Physics-informed neural networks with hard constraints for inverse design[J]. SIAM Journal on Scientific Computing, 2021, 43(6): B1105-B1132. |
31 | Daw A, Bu J, Wang S, et al. Rethinking the importance of sampling in physics-informed neural networks[J/OL]. 2022, . |
32 | Wu C X, Zhu M, Tan Q Y, et al. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115671. |
33 | Lu L, Jin P Z, Pang G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3(3): 218-229. |
34 | Zhang X, Zhou T, Sundmacher K. Integrated metal-organic framework (MOF) and pressure/vacuum swing adsorption process design: MOF matching[J]. AIChE Journal, 2022, 68(9): e17788. |
35 | Yancy-Caballero D, Leperi K T, Bucior B J, et al. Process-level modelling and optimization to evaluate metal-organic frameworks for post-combustion capture of CO2 [J]. Molecular Systems Design & Engineering, 2020, 5(7): 1205-1218. |
36 | Moosavi S M, Novotny B Á, Ongari D, et al. A data-science approach to predict the heat capacity of nanoporous materials[J]. Nature Materials, 2022, 21(12): 1419-1425. |
37 | Leperi K T, Yancy-Caballero D, Snurr R Q, et al. 110th anniversary: surrogate models based on artificial neural networks to simulate and optimize pressure swing adsorption cycles for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18241-18252. |
38 | Subraveti S G, Li Z K, Prasad V, et al. Physics-based neural networks for simulation and synthesis of cyclic adsorption processes[J]. Industrial & Engineering Chemistry Research, 2022, 61(11): 4095-4113. |
39 | Jagtap A D, Karniadakis G E. Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations[J]. Communications in Computational Physics, 2020, 28(5): 2002-2041. |
40 | Yang R T. Adsorbents: Fundamentals and Applications[M]. Hoboken, NJ: Wiley-Interscience, 2003. |
41 | Ruthven D M, Farooq S, Knaebel K S. Pressure Swing Adsorption[M]. New York, NY: VCH Publishers, 1994. |
42 | Goto M, Smith J M, McCoy B J. Parabolic profile approximation (linear driving-force model) for chemical reactions[J]. Chemical Engineering Science, 1990, 45(2): 443-448. |
43 | Golshan-Shirazi S, Guiochon G. Analytical solution for the ideal model of chromatography in the case of a Langmuir isotherm[J]. Analytical Chemistry, 1988, 60(21): 2364-2374. |
44 | Yu J, Lu L, Meng X H, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114823. |
45 | Sun L N, Gao H, Pan S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732. |
46 | Meng X H, Li Z, Zhang D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250. |
47 | 陈明强. 一维混相驱油二氧化碳扩散规律研究[D]. 青岛: 中国石油大学(华东), 2016. |
Chen M Q. Study on carbon dioxide dispersion in miscible flooding[D]. Qingdao: China University of Petroleum, 2016. | |
48 | Ogata A, Banks R. A solution of the differential equation of longitudinal dispersion in porous media[R]. U.S. Government Report, 1961. |
49 | Huang Y L, Seinfeld J H. A note on flow behavior in axially-dispersed plug flow reactors with step input of tracer[J]. Atmospheric Environment: Ⅹ, 2019, 1: 100006. |
50 | Masala A, Vitillo J G, Mondino G, et al. CO2 capture in dry and wet conditions in UTSA-16 metal-organic framework[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 455-463. |
51 | Nguyen T T T, Lin J B, Shimizu G K H, et al. Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20[J]. Chemical Engineering Journal, 2022, 442: 136263. |
52 | Simon C M, Smit B, Haranczyk M. pyIAST: ideal adsorbed solution theory (IAST) Python package[J]. Computer Physics Communications, 2016, 200: 364-380. |
[1] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
[2] | Zhibin LU, Yimeng LI, Chang HE, Bingjian ZHANG, Qinglin CHEN, Ming PAN. Integrating physics-informed neural networks with partitioned coupling strategy for modeling conjugate heat transfer [J]. CIESC Journal, 2022, 73(12): 5483-5493. |
[3] | LU Zhibin, QU Jinghui, LIU Hua, HE Chang, ZHANG Bingjian, CHEN Qinglin. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network [J]. CIESC Journal, 2021, 72(3): 1496-1503. |
[4] | LI Yajuan, ZHAO Chuanqi, YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Mechanism and model of dynamic adsorption of glyphosate contaminated water on graphene-based iron oxide composite [J]. CIESC Journal, 2018, 69(9): 3944-3953. |
[5] | LU Xianghong, XU Zhichao, JI Jianbing. Effects of Pulse Ultrasound on Adsorption of Geniposide on Resin 1300 in a Fixed Bed [J]. , 2011, 19(6): 1060-1065. |
[6] | LI Jing, LI Zhong, LIU Bing, XIA Qibin, XI Hongxia. Effect of Relative Humidity on Adsorption of Formaldehyde on Modified Activated Carbons [J]. , 2008, 16(6): 871-875. |
[7] | LI Xiang, LI Zhong, LUO Ling'ai. Adsorption Kinetics of Dibenzofuran in Activated Carbon Packed Bed [J]. , 2008, 16(2): 203-208. |
[8] | ZHANGDonghui, ZHOULi, SUWei, SUNYan. Equilibrium Modeling for Hydrogen Isotope Separation by Cryogenic Adsorption [J]. , 2006, 14(4): 526-531. |
[9] | HU Hongbo, YAO Shanjing, LIN Dongqiang, ZHU Ziqiang. Adsorption of Protein in the Expanded Bed [J]. , 2000, 8(3): 230-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||