CIESC Journal ›› 2024, Vol. 75 ›› Issue (4): 1153-1166.DOI: 10.11949/0438-1157.20231326
• Reviews and monographs • Previous Articles Next Articles
Xiaojie JU(), Wanlu SONG, Chenyu ZHOU, Qiutong SHEN, Yutian LIAO, Jueying GONG, Liangyin CHU
Received:
2023-12-12
Revised:
2024-01-23
Online:
2024-06-06
Published:
2024-04-25
Contact:
Xiaojie JU
巨晓洁(), 宋婉璐, 周宸宇, 沈秋彤, 廖雨田, 龚珏颖, 褚良银
通讯作者:
巨晓洁
作者简介:
巨晓洁(1980—),女,博士,教授,juxiaojie@scu.edu.cn
基金资助:
CLC Number:
Xiaojie JU, Wanlu SONG, Chenyu ZHOU, Qiutong SHEN, Yutian LIAO, Jueying GONG, Liangyin CHU. Advances in drug nanodelivery systems for the treatment of intracellular bacterial infections[J]. CIESC Journal, 2024, 75(4): 1153-1166.
巨晓洁, 宋婉璐, 周宸宇, 沈秋彤, 廖雨田, 龚珏颖, 褚良银. 纳米药物载体用于治疗胞内菌感染的研究进展[J]. 化工学报, 2024, 75(4): 1153-1166.
Add to citation manager EndNote|Ris|BibTeX
类型 | 优点 | 缺点 | 典型体系 | 杀菌率 |
---|---|---|---|---|
聚合物纳米颗粒 | 稳定性高;易修饰 | 少部分具有细胞毒性; 溶剂残留 | 天然聚合物纳米颗粒、合成聚合物 纳米颗粒[ | 高[ |
生物源性纳米颗粒 | 生物相容性良好;可降解; 靶向性好 | 稳定性较差 | 外泌体、细胞膜纳米颗粒、细菌囊泡[ | 极高[ |
脂质体与脂质纳米颗粒 | 生物相容性良好;不良反应少; 易制备;靶向性强 | SLN载药量低 | 脂质体、SLN、NLC[ | 极高[ |
无机纳米颗粒 | 形状多样;易制备;易修饰 | 可降解性较差 | 金属和金属氧化物纳米颗粒、量子点、 无机非金属纳米颗粒[ | 高[ |
Table 1 Nanodelivery systems for intracellular bacteria therapy
类型 | 优点 | 缺点 | 典型体系 | 杀菌率 |
---|---|---|---|---|
聚合物纳米颗粒 | 稳定性高;易修饰 | 少部分具有细胞毒性; 溶剂残留 | 天然聚合物纳米颗粒、合成聚合物 纳米颗粒[ | 高[ |
生物源性纳米颗粒 | 生物相容性良好;可降解; 靶向性好 | 稳定性较差 | 外泌体、细胞膜纳米颗粒、细菌囊泡[ | 极高[ |
脂质体与脂质纳米颗粒 | 生物相容性良好;不良反应少; 易制备;靶向性强 | SLN载药量低 | 脂质体、SLN、NLC[ | 极高[ |
无机纳米颗粒 | 形状多样;易制备;易修饰 | 可降解性较差 | 金属和金属氧化物纳米颗粒、量子点、 无机非金属纳米颗粒[ | 高[ |
Fig.2 (a) Challenges in the antibiotic treatment of intracellular bacterial infections[60]; (b) Enhancement of internalization mechanisms of drugs by infected cells[7]
Fig.3 (a) Schematic diagram of preparation of drug nanodelivery system for the treatment of intracellular Staphylococcus aureus infection[83]; (b) Schematic diagram of the action mechanism of AAC[94]; (c) Schematic diagram of synthesis and pH-responsive drug release process of ZnO@MSNs-DOX[96]; (d) Schematic diagram of the release mechanism of magnetic MSNs[98]
Fig.4 (a) Schematic diagram of pH-sensitive release of vancomycin from polymer nanoparticles[103]; (b) Schematic diagram of the synthesis route and antibacterial process of Ag@QAL[109]
4 | Fu A K, Yao B Q, Dong T T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer[J]. Cell, 2022, 185(8): 1356-1372. |
5 | Galeano Niño J L, Wu H R, LaCourse K D, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer[J]. Nature, 2022, 611: 810-817. |
6 | LaCourse K D, Zepeda-Rivera M, Kempchinsky A G, et al. The cancer chemotherapeutic 5-fluorouracil is a potent Fusobacterium nucleatum inhibitor and its activity is modified by intratumoral microbiota[J]. Cell Reports, 2022, 41(7): 111625. |
7 | Subramaniam S, Joyce P, Thomas N, et al. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections[J]. Advanced Drug Delivery Reviews, 2021, 177: 113948. |
8 | Chen G Y, Roy I, Yang C H, et al. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J]. Chemical Reviews, 2016, 116(5): 2826-2885. |
9 | Huh A J, Kwon Y J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. Journal of Controlled Release, 2011, 156(2): 128-145. |
10 | Tang L, Zhang A N, Zhang Z Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy[J]. Cancer Communications, 2022, 42(2): 141-163. |
11 | Barroso L, Viegas C, Vieira J, et al. Lipid-based carriers for food ingredients delivery[J]. Journal of Food Engineering, 2021, 295: 110451. |
12 | Lam S J, Wong E H H, Boyer C, et al. Antimicrobial polymeric nanoparticles[J]. Progress in Polymer Science, 2018, 76: 40-64. |
13 | Rösler A, Vandermeulen G W M, Klok H A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers[J]. Advanced Drug Delivery Reviews, 2012, 64: 270-279. |
14 | Griffiths G, Nyström B, Sable S B, et al. Nanobead-based interventions for the treatment and prevention of tuberculosis[J]. Nature Reviews Microbiology, 2010, 8: 827-834. |
15 | Xiong M H, Li Y J, Bao Y, et al. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery[J]. Advanced Materials, 2012, 24(46): 6175-6180. |
16 | 冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
Feng Q Q, Zhang T J, Zhao X, et al. Synthetic nanobiology—fusion of synthetic biology and nanobiology[J]. Synthetic Biology Journal, 2022, 3(2): 260-278. | |
17 | Zahid A A, Chakraborty A, Luo W, et al. Tailoring the inherent properties of biobased nanoparticles for nanomedicine[J]. ACS Biomaterials Science & Engineering, 2023, 9(7): 3972-3986. |
18 | Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annual Review of Cell and Developmental Biology, 2014, 30: 255-289. |
19 | Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nature Cell Biology, 2019, 21: 9-17. |
20 | Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nature Reviews Immunology, 2002, 2: 569-579. |
21 | Ibrahim A, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology[J]. Annual Review of Physiology, 2016, 78: 67-83. |
22 | Kanada M, Bachmann M H, Hardy J W, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1433-E1442. |
23 | Alvarez-Erviti L, Seow Y, Yin H F, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nature Biotechnology, 2011, 29: 341-345. |
24 | Yang X H, Shi G M, Guo J, et al. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus [J]. International Journal of Nanomedicine, 2018, 13: 8095-8104. |
25 | He Y C, Cong C, Li L, et al. Sequential intra-intercellular delivery of nanomedicine for deep drug-resistant solid tumor penetration[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 8978-8988. |
26 | Nokhodchi A, Ghafourian T, Mohammadi G. Nanotechnology tools for efficient antibacterial delivery to Salmonella [M]//Salmonella — A Diversified Superbug. London: InTech, 2012. |
27 | Puglia C, Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals[J]. Expert Opinion on Drug Delivery, 2012, 9(4): 429-441. |
28 | Haider M, Abdin S M, Kamal L, et al. Nanostructured lipid carriers for delivery of chemotherapeutics: a review[J]. Pharmaceutics, 2020, 12(3): 288. |
29 | Viegas C, Patrício A B, Prata J M, et al. Solid lipid nanoparticles vs. nanostructured lipid carriers: a comparative review[J]. Pharmaceutics, 2023, 15(6): 1593. |
30 | Xie S Y, Yang F, Tao Y F, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella [J]. Scientific Reports, 2017, 7: 41104. |
31 | Doktorovová S, Kovačević A B, Garcia M L, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108: 235-252. |
32 | 邬欣, 曾利胜, 王剑龙, 等. 无机纳米颗粒在癌症治疗中的研究进展[J]. 材料导报, 2021, 35(S1): 87-93. |
Wu X, Zeng L S, Wang J L, et al. Research progress of inorganic nanoparticles in cancer therapy[J]. Materials Reports, 2021, 35(S1): 87-93. | |
33 | Eleraky N E, Allam A, Hassan S B, et al. Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations[J]. Pharmaceutics, 2020, 12(2): 142. |
34 | Malaekeh-Nikouei B, Fazly Bazzaz B S, Mirhadi E, et al. The role of nanotechnology in combating biofilm-based antibiotic resistance[J]. Journal of Drug Delivery Science and Technology, 2020, 60: 101880. |
35 | Spirescu V A, Chircov C, Grumezescu A M, et al. Polymeric nanoparticles for antimicrobial therapies: an up-to-date overview[J]. Polymers, 2021, 13(5): 724. |
36 | Wang L L, Hu C, Shao L Q. The antimicrobial activity of nanoparticles: present situation and prospects for the future[J]. International Journal of Nanomedicine, 2017, 12: 1227-1249. |
37 | Varier K M, Gudeppu M, Chinnasamy A, et al. Nanoparticles: antimicrobial applications and its prospects[M]//Advanced Nanostructured Materials for Environmental Remediation. Cham: Springer, 2019: 321-355. |
38 | Lee N Y, Ko W C, Hsueh P R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms[J]. Frontiers in Pharmacology, 2019, 10: 1153. |
39 | Ahlawat J, Hooda R, Sharma M, et al. Nanoparticles in biomedical applications[M]//Patra J, Fraceto L, Das G, et al. Green Nanoparticles. Cham: Springer, 2020: 227-250. |
40 | Anderson S D, Gwenin V V, Gwenin C D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications[J]. Nanoscale Research Letters, 2019, 14: 188. |
41 | Kurtjak M, Aničić N, Vukomanovicć M. Inorganic nanoparticles: innovative tools for antimicrobial agents[M]//Antibacterial Agents. Londen: InTech, 2017. |
42 | Lai C Y, Trewyn B G, Jeftinija D M, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society, 2003, 125(15): 4451-4459. |
43 | Shen D K, Yang J P, Li X M, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Letters, 2014, 14(2): 923-932. |
44 | Argyo C, Weiss V, Bräuchle C, et al. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery[J]. Chemistry of Materials, 2014, 26(1): 435-451. |
45 | Clemens D L, Lee B Y, Xue M, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(5): 2535-2545. |
46 | Kang J, Dietz M J, Hughes K, et al. Silver nanoparticles present high intracellular and extracellular killing against Staphylococcus aureus [J]. Journal of Antimicrobial Chemotherapy, 2019, 74(6): 1578-1585. |
47 | Ichimaru H, Harada A, Yoshimoto S, et al. Gold coating of silver nanoplates for enhanced dispersion stability and efficient antimicrobial activity against intracellular bacteria[J]. Langmuir, 2018, 34(35): 10413-10418. |
48 | Lacoma A, Usón L, Mendoza G, et al. Novel intracellular antibiotic delivery system against Staphylococcus aureus: cloxacillin-loaded poly(d,l-lactide-co-glycolide) acid nanoparticles [J]. Nanomedicine, 2020, 15(12): 1189-1203. |
49 | Zaki N M, Hafez M M. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium [J]. AAPS PharmSciTech, 2012, 13: 411-421. |
50 | Nguyen T K, Lam S J, Ho K K K, et al. Rational design of single-chain polymeric nanoparticles that kill planktonic and biofilm bacteria[J]. ACS Infectious Diseases, 2017, 3(3): 237-248. |
51 | Lenoir S, Pagnoulle C, Detrembleur C, et al. New antibacterial cationic surfactants prepared by atom transfer radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(3): 1214-1224. |
52 | Qiao Y, Yang C, Coady D J, et al. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane[J]. Biomaterials, 2012, 33(4): 1146-1153. |
53 | Qu S Q, Han Y M, Liu Y, et al. Milk exosomes facilitate oral delivery of drugs against intestinal bacterial infections[J]. Journal of Agricultural and Food Chemistry, 2022, 70(51): 16069-16079. |
54 | Sun D M, Zhuang X Y, Xiang X Y, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Molecular Therapy, 2010, 18(9): 1606-1614. |
55 | Natsaridis E, Gkartziou F, Mourtas S, et al. Moxifloxacin liposomes: effect of liposome preparation method on physicochemical properties and antimicrobial activity against Staphylococcus epidermidis [J]. Pharmaceutics, 2022, 14(2): 370. |
56 | Karimi N, Ghanbarzadeh B, Hamishehkar H, et al. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC)[J]. Colloid and Interface Science Communications, 2018, 22: 18-24. |
57 | Subramaniam S, Thomas N, Gustafsson H, et al. Rifampicin-loaded mesoporous silica nanoparticles for the treatment of intracellular infections[J]. Antibiotics, 2019, 8(2): 39. |
58 | Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, et al. Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms[J]. Microporous and Mesoporous Materials, 2021, 311: 110681. |
59 | Xie S Y, Tao Y F, Pan Y H, et al. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents[J]. Journal of Controlled Release, 2014, 187: 101-117. |
60 | Wang C, Yang Y, Cao Y Y, et al. Nanocarriers for the delivery of antibiotics into cells against intracellular bacterial infection[J]. Biomaterials Science, 2023, 11(2): 432-444. |
61 | Gustafson H H, Holt-Casper D, Grainger D W, et al. Nanoparticle uptake: the phagocyte problem[J]. Nano Today, 2015, 10(4): 487-510. |
62 | Blanco E, Shen H F, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery[J]. Nature Biotechnology, 2015, 33: 941-951. |
63 | Vonarbourg A, Passirani C, Saulnier P, et al. Parameters influencing the stealthiness of colloidal drug delivery systems[J]. Biomaterials, 2006, 27(24): 4356-4373. |
64 | Zhao J C, Stenzel M H. Entry of nanoparticles into cells: the importance of nanoparticle properties[J]. Polymer Chemistry, 2018, 9(3): 259-272. |
65 | Cheng X J, Tian X, Wu A Q, et al. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20568-20575. |
66 | Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes[J]. Journal of Controlled Release, 2022, 342: 93-110. |
67 | Chen R Y, Pu X Q, Liu R R, et al. Biocompatible snowman-like dimer nanoparticles for improved cellular uptake in intrahepatic cholangiocarcinoma[J]. Pharmaceutics, 2023, 15(8): 2132. |
68 | Yue Z G, Wei W, You Z X, et al. Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs[J]. Advanced Functional Materials, 2011, 21(18): 3446-3453. |
69 | Lagarrigue P, Moncalvo F, Cellesi F. Non-spherical polymeric nanocarriers for therapeutics: the effect of shape on biological systems and drug delivery properties[J]. Pharmaceutics, 2022, 15(1): 32. |
70 | Ahsan F, Rivas I P, Khan M A, et al. Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages[J]. Journal of Controlled Release, 2002, 79(1/2/3): 29-40. |
71 | Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles[J]. International Journal of Nanomedicine, 2012, 7: 5577-5591. |
72 | 王好平, 罗根祥, 刘春生, 等. 球型胶体颗粒的表面电位和表面电荷密度的关系[J]. 高等学校化学学报, 2005, 26(4): 754-756. |
Wang H P, Luo G X, Liu C S, et al. Relationship between surface charge density and surface potential of spherical colloidal particle[J]. Chemical Journal of Chinese Universities, 2005, 26(4): 754-756. | |
73 | He C B, Hu Y P, Yin L C, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles[J]. Biomaterials, 2010, 31(13): 3657-3666. |
74 | Maghrebi S, Jambhrunkar M, Joyce P, et al. Engineering PLGA-lipid hybrid microparticles for enhanced macrophage uptake[J]. ACS Applied Bio Materials, 2020, 3(7): 4159-4167. |
75 | Saha K, Rahimi M, Yazdani M, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona[J]. ACS Nano, 2016, 10(4): 4421-4430. |
76 | Sanchez L, Yi Y, Yu Y. Effect of partial PEGylation on particle uptake by macrophages[J]. Nanoscale, 2017, 9(1): 288-297. |
77 | Tian H, Luo Z Y, Liu L L, et al. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance[J]. Advanced Functional Materials, 2017, 27(38): 1703197. |
78 | Sun H P, Su J H, Meng Q S, et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer[J]. Advanced Functional Materials, 2017, 27(3): 1604300. |
79 | Rao L, Cai B, Bu L L, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11(4): 3496-3505. |
80 | Silva A K, Di Corato R, Pellegrino T, et al. Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials[J]. Nanoscale, 2013, 5(23): 11374-11384. |
81 | Copp J A, Fang R H, Luk B T, et al. Clearance of pathological antibodies using biomimetic nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): 13481-13486. |
82 | 赵静, 刘艳, 解军波, 等. 中药纳米递药系统的研究进展[J]. 中华中医药学刊, 2022, 40(5): 134-137, 276. |
Zhao J, Liu Y, Xie J B, et al. Research progress of nano-drug delivery system of traditional Chinese medicine[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(5): 134-137, 276. | |
83 | Gao F, Xu L L, Yang B Q, et al. Kill the real with the fake: eliminate intracellular Staphylococcus aureus using nanoparticle coated with its extracellular vesicle membrane as active-targeting drug carrier[J]. ACS Infectious Diseases, 2019, 5(2): 218-227. |
84 | Pumerantz A, Muppidi K, Agnihotri S, et al. Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA)[J]. International Journal of Antimicrobial Agents, 2011, 37(2): 140-144. |
85 | Zhang C X, Zhao W Y, Bian C, et al. Antibiotic-derived lipid nanoparticles to treat intracellular Staphylococcus aureus [J]. ACS Applied Bio Materials, 2019, 2(3): 1270-1277. |
86 | Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell[J]. Cell Research, 2010, 20(3): 256-275. |
87 | Nishimura Y, Takeda K, Ezawa R, et al. A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway[J]. Journal of Nanobiotechnology, 2014, 12: 11. |
88 | Allolio C, Magarkar A, Jurkiewicz P, et al. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11923-11928. |
89 | 徐柳, 钱晨, 朱辰奇, 等. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348. |
Xu L, Qian C, Zhu C Q, et al. The study of peptides nanomedicine for drug delivery systems[J]. Progress in Chemistry, 2018, 30(9): 1341-1348 | |
90 | Ding X, Yang C, Lim T P, et al. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers[J]. Biomaterials, 2012, 33(28): 6593-6603. |
91 | Kullberg M, Owens J L, Mann K. Listeriolysin O enhances cytoplasmic delivery by Her-2 targeting liposomes[J]. Journal of Drug Targeting, 2010, 18(4): 313-320. |
92 | Ding L, Yao C J, Yin X F, et al. Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles[J]. Small, 2018, 14(42): 1801451. |
93 | Feng W L, Li G F, Kang X X, et al. Cascade-targeting poly(amino acid) nanoparticles eliminate intracellular bacteria via on-site antibiotic delivery[J]. Advanced Materials, 2022, 34(12): 2109789. |
94 | Lehar S M, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus [J]. Nature, 2015, 527: 323-328. |
95 | Mudakavi R J, Vanamali S, Chakravortty D, et al. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella [J]. RSC Advances, 2017, 7(12): 7022-7032. |
96 | Muhammad F, Guo M Y, Qi W X, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids[J]. Journal of the American Chemical Society, 2011, 133(23): 8778-8781. |
97 | Frasconi M, Liu Z C, Lei J Y, et al. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles[J]. Journal of the American Chemical Society, 2013, 135(31): 11603-11613. |
98 | Ruiz-Hernández E, Baeza A, Vallet-Regí M. Smart drug delivery through DNA/magnetic nanoparticle gates[J]. ACS Nano, 2011, 5(2): 1259-1266. |
99 | Menina S, Labouta H I, Geyer R, et al. Invasin-functionalized liposome nanocarriers improve the intracellular delivery of anti-infective drugs[J]. RSC Advances, 2016, 6(47): 41622-41629. |
100 | Manganiello M J, Cheng C, Convertine A J, et al. Diblock copolymers with tunable pH transitions for gene delivery[J]. Biomaterials, 2012, 33(7): 2301-2309. |
101 | Wei T, Yu Q, Zhan W J, et al. A smart antibacterial surface for the on-demand killing and releasing of bacteria[J]. Advanced Healthcare Materials, 2016, 5(4): 449-456. |
102 | Fenaroli F, Robertson J D, Scarpa E, et al. Polymersomes eradicating intracellular bacteria[J]. ACS Nano, 2020, 14(7): 8287-8298. |
103 | Pei Y H, Mohamed M F, Seleem M N, et al. Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages[J]. Journal of Controlled Release, 2017, 267: 133-143. |
104 | Obuobi S, Julin K, Fredheim E G A, et al. Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections[J]. Journal of Controlled Release, 2020, 324: 620-632. |
105 | Yu Y J, Yan J H, Chen Q W, et al. Polymeric nano-system for macrophage reprogramming and intracellular MRSA eradication[J]. Journal of Controlled Release, 2023, 353: 591-610. |
106 | Liu J Y, Pang Y, Zhu Z Y, et al. Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment[J]. Biomacromolecules, 2013, 14(5): 1627-1636. |
107 | Wang Z Y, Sheng L N, Yang X X, et al. Natural biomass-derived carbon dots as potent antimicrobial agents against multidrug-resistant bacteria and their biofilms[J]. Sustainable Materials and Technologies, 2023, 36: e00584. |
108 | Kang X X, Bu F Q, Feng W L, et al. Dual-cascade responsive nanoparticles enhance pancreatic cancer therapy by eliminating tumor-resident intracellular bacteria[J]. Advanced Materials, 2022, 34(49): 2206765. |
109 | Wang Y L, Li Z X, Yang D J, et al. Microwave-mediated fabrication of silver nanoparticles incorporated lignin-based composites with enhanced antibacterial activity via electrostatic capture effect[J]. Journal of Colloid and Interface Science, 2021, 583: 80-88. |
110 | Liu Y, Shi L Q, Su L Z, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J]. Chemical Society Reviews, 2019, 48(2): 428-446. |
1 | Mak T W, Saunders M E. The Mmmune Response: Basic and Clinical Principles[M]. NY, US: Academic Press, 2005. |
2 | Zou J, Shankar N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages[J]. Cellular Microbiology, 2016, 18(6): 831-843. |
3 | Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980. |
111 | Yan L X, Chen L J, Zhao X, et al. pH switchable nanoplatform for in vivo persistent luminescence imaging and precise photothermal therapy of bacterial infection[J]. Advanced Functional Materials, 2020, 30(14): 1909042. |
[1] | Lu DENG, Xiaojie JU, Wenjie ZHANG, Rui XIE, Wei WANG, Zhuang LIU, Dawei PAN, Liangyin CHU. Controllable preparation of radioactive chitosan embolic microspheres by microfluidic method [J]. CIESC Journal, 2023, 74(4): 1781-1794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||