CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5437-5452.DOI: 10.11949/0438-1157.20250442

• Energy and environmental engineering • Previous Articles     Next Articles

Optimization of thermal insulation performance of cryogenic vessel based on actively cooled thermal shield insulation

Xin WANG1(), Kuan SU2, Ming ZHU3(), Wenchao HAN3, Yaohua CHEN3, Dongliang CUI3, Liang CHENG3, Shuping CHEN1()   

  1. 1.School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.China Nuclear Power Engineering Co. , Ltd. , Beijing 100089, China
    3.China Special Equipment Testing and Research Institute, Beijing 100029, China
  • Received:2025-04-25 Revised:2025-07-04 Online:2025-11-25 Published:2025-10-25
  • Contact: Ming ZHU, Shuping CHEN

基于主动冷屏绝热的超低温容器保冷性能优化

王鑫1(), 苏宽2, 朱鸣3(), 韩文超3, 陈耀华3, 崔栋梁3, 程亮3, 陈叔平1()   

  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.中国核电工程有限公司,北京 100089
    3.中国特种设备检测研究院,北京 100029
  • 通讯作者: 朱鸣,陈叔平
  • 作者简介:王鑫(1997—),男,博士研究生,wangx9730@163.com
  • 基金资助:
    国家重点研发计划项目(2024YFF0620004)

Abstract:

Ultra-low temperature liquid storage technology faces technical bottlenecks of high heat leakage of passive insulation scheme and high energy consumption of active insulation scheme. This paper proposes a thermal transfer model that couples actively cooled thermal shield (ACTS) insulation with multi-layer insulation (MLI) to minimize both heat leakage and cooling power consumption in cryogenic vessels. An experimental setup for evaluating the ACTS insulation performance was established based on a liquid helium vessel, and the transient temperature variation and heat transfer behavior of MLI and ACTS were analyzed to validate the accuracy of the theoretical model. Through parameter optimization studies, the effects of ACTS temperature, position, and quantity on the MLI temperature gradient field, heat flux distribution, and cooling power consumption were revealed. The results show that ACTS controls the temperature gradient, extending the cryogenic region of MLI and reducing the temperature difference between the cryogenic vessel and ACTS. The optimal temperature and position for a single ACTS insulation are 73.6 K and 0.425, respectively, with a high-temperature threshold of 150 K. For a dual ACTS insulation system, the optimal positions are 0.2375 and 0.5875, with temperatures of 36.4 K and 128.7 K, leading to a 24.6% reduction in the comprehensive evaluation factor compared to the single ACTS insulation. The three ACTS insulation systems reduce the heat flux density of the cryogenic vessel to 0.0202 W/m², which is 44.6% and 28.5% lower than the single and dual ACTS insulation systems, respectively, verifying the significant advantages of multiple ACTS in improving the insulation performance of cryogenic vessels. This study provides theoretical and data support for optimizing the active thermal insulation performance of cryogenic vessels.

Key words: cryogenic vessel, cryogenic insulation, actively cooled thermal shield, heat transfer, thermodynamics, optimization

摘要:

超低温液体储存技术面临被动绝热方案热泄漏高与主动绝热方案能耗大的技术瓶颈。提出主动冷却屏(actively cooled thermal shield,ACTS)绝热与多层绝热(multi-layer insulation,MLI)耦合的热传递模型,以实现超低温容器热泄漏与冷却功耗的协同最小化。基于液氦容器搭建ACTS绝热性能实验装置,分析了MLI和ACTS的瞬态温度变化及热传递规律,验证了理论模型的精度。通过参数优化研究,揭示了ACTS温度、位置及数量对MLI温度梯度场、热通量分布及冷却能耗的影响机制。结果表明,ACTS通过温度梯度扩大了MLI的低温区,减小了低温容器与ACTS之间的温差;单ACTS的最佳温度和位置分别为73.6 K、0.425(位置0为冷端),温度临界值为150 K;双ACTS的最佳位置分别为0.2375、0.5875,其最佳温度为36.4、128.7 K,综合评价因子较单ACTS降低24.6%;三ACTS方案将热通量降低至0.0202 W/m2,相较于单/双ACTS分别降低44.6%、28.5%,验证了多个ACTS改善超低温容器绝热性能的显著优势。该研究为超低温容器主动绝热性能控制提供了理论依据与数据支撑。

关键词: 低温容器, 低温绝热, 主动冷却屏, 传热, 热力学, 优化

CLC Number: