CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5437-5452.DOI: 10.11949/0438-1157.20250442
• Energy and environmental engineering • Previous Articles Next Articles
Xin WANG1(
), Kuan SU2, Ming ZHU3(
), Wenchao HAN3, Yaohua CHEN3, Dongliang CUI3, Liang CHENG3, Shuping CHEN1(
)
Received:2025-04-25
Revised:2025-07-04
Online:2025-11-25
Published:2025-10-25
Contact:
Ming ZHU, Shuping CHEN
王鑫1(
), 苏宽2, 朱鸣3(
), 韩文超3, 陈耀华3, 崔栋梁3, 程亮3, 陈叔平1(
)
通讯作者:
朱鸣,陈叔平
作者简介:王鑫(1997—),男,博士研究生,wangx9730@163.com
基金资助:CLC Number:
Xin WANG, Kuan SU, Ming ZHU, Wenchao HAN, Yaohua CHEN, Dongliang CUI, Liang CHENG, Shuping CHEN. Optimization of thermal insulation performance of cryogenic vessel based on actively cooled thermal shield insulation[J]. CIESC Journal, 2025, 76(10): 5437-5452.
王鑫, 苏宽, 朱鸣, 韩文超, 陈耀华, 崔栋梁, 程亮, 陈叔平. 基于主动冷屏绝热的超低温容器保冷性能优化[J]. 化工学报, 2025, 76(10): 5437-5452.
Add to citation manager EndNote|Ris|BibTeX
| 项目 | 设备 | 品牌 | 类型 | 测量范围 | 测量精度 |
|---|---|---|---|---|---|
| 温度 | 二极管温度传感器 | Lake Shore | DT-670-SD | 1.4~500 K | ±12 mK, ±0.8% R |
| N2流量 | 气体质量流量计Ⅰ | ALICAT | M-Series | 0~10 SLPM | ±0.2% F.S., ±0.4% R |
| He流量 | 气体质量流量计Ⅱ | ALICAT | M-Series | 0~5 SLPM | ±0.2% F.S |
| MLI厚度 | 游标直径尺 | 在宇工具 | JC300 | 300~600 mm | ±0.04 mm |
Table 1 Measurement accuracy and range of experimental instruments
| 项目 | 设备 | 品牌 | 类型 | 测量范围 | 测量精度 |
|---|---|---|---|---|---|
| 温度 | 二极管温度传感器 | Lake Shore | DT-670-SD | 1.4~500 K | ±12 mK, ±0.8% R |
| N2流量 | 气体质量流量计Ⅰ | ALICAT | M-Series | 0~10 SLPM | ±0.2% F.S., ±0.4% R |
| He流量 | 气体质量流量计Ⅱ | ALICAT | M-Series | 0~5 SLPM | ±0.2% F.S |
| MLI厚度 | 游标直径尺 | 在宇工具 | JC300 | 300~600 mm | ±0.04 mm |
| ACTS数量 | TACTS1/K | TACTS2/K | TACTS3/K | q1/(W/m2) | q2/(W/m2) | q3/(W/m2) | q4/(W/m2) | ACTS1 | ACTS2 | ACTS3 | P/W | F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 73.6 | — | — | 0.0365 | 1.132 | — | — | 0.4250 | — | — | 1.72 | 0.780 |
| 2 | 36.4 | 128.7 | — | 0.0261 | 0.366 | 1.573 | — | 0.2375 | 0.5875 | — | 1.74 | 0.626 |
| 3 | 21.2 | 88.6 | 187.3 | 0.0202 | 0.128 | 0.569 | 1.861 | 0.1125 | 0.4000 | 0.725 | 1.61 | 0.548 |
Table 2 Optimal position and temperature of ACTS in different quantities
| ACTS数量 | TACTS1/K | TACTS2/K | TACTS3/K | q1/(W/m2) | q2/(W/m2) | q3/(W/m2) | q4/(W/m2) | ACTS1 | ACTS2 | ACTS3 | P/W | F |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 73.6 | — | — | 0.0365 | 1.132 | — | — | 0.4250 | — | — | 1.72 | 0.780 |
| 2 | 36.4 | 128.7 | — | 0.0261 | 0.366 | 1.573 | — | 0.2375 | 0.5875 | — | 1.74 | 0.626 |
| 3 | 21.2 | 88.6 | 187.3 | 0.0202 | 0.128 | 0.569 | 1.861 | 0.1125 | 0.4000 | 0.725 | 1.61 | 0.548 |
| [1] | Berstad D, Gardarsdottir S, Roussanaly S, et al. Liquid hydrogen as prospective energy carrier: a brief review and discussion of underlying assumptions applied in value chain analysis[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111772. |
| [2] | Yatsenko E A, Goltsman B M, Novikov Y V, et al. Review on modern ways of insulation of reservoirs for liquid hydrogen storage[J]. International Journal of Hydrogen Energy, 2022, 47(97): 41046-41054. |
| [3] | 陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814. |
| Chen X L, Liu X M, Wang J, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814. | |
| [4] | Yin L, Yang H N, Ju Y L. Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks[J]. International Journal of Hydrogen Energy, 2024, 57: 1302-1315. |
| [5] | 蒋文兵, 黄永华, 耑锐, 等. 液氦贮存容器中热声振荡发生条件及抑制措施[J]. 真空与低温, 2018, 24(3): 193-199. |
| Jiang W B, Huang Y H, Zhuan R, et al. Trigger conditions and suppression measures of thermoacoustic oscillations in liquid helium vessels[J]. Vacuum and Cryogenics, 2018, 24(3): 193-199. | |
| [6] | Shu Q S, Demko J, Fesmire J, et al. Design, configuration, and thermal optimization of advanced cryostats[J]. IOP Conference Series: Materials Science and Engineering, 2024, 1301(1): 012041. |
| [7] | Morales-Ospino R, Celzard A, Fierro V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113360. |
| [8] | Wang H R, Wang B, Xu T C, et al. Thermal models for self-pressurization prediction of liquid hydrogen tanks: formulation, validation, assessment, and prospects[J]. Fuel, 2024, 365: 131247. |
| [9] | Li K, Wen J, Xin B P, et al. Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield[J]. Energy, 2024, 286: 129450. |
| [10] | Notardonato W U, Swanger A M, Fesmire J E, et al. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage[J]. IOP Conference Series: Materials Science and Engineering, 2017, 278: 012012. |
| [11] | 汪彬, 王天祥, 黄永华, 等. 液氢贮箱热力学排气系统建模及控压特性[J]. 化工学报, 2016, 67(S2): 20-25. |
| Wang B, Wang T X, Huang Y H, et al. Modeling and pressure control characteristics of thermodynamic venting system in liquid hydrogen storage tank[J]. CIESC Journal, 2016, 67(S2): 20-25. | |
| [12] | Zheng J P, Chen L B, Wang J, et al. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 186: 526-534. |
| [13] | Kanda M, Matsumoto K, Yamaguchi S. Heat transfer through multi-layer insulation (MLI)[J]. Physica C: Superconductivity and its Applications, 2021, 583: 1353799. |
| [14] | 蒋文兵, 胡聪, 孙培杰, 等. 蓄冷能力对液氢贮箱蒸气冷却屏瞬态特性的影响[J]. 工程热物理学报, 2023, 44(5): 1161-1168. |
| Jiang W B, Hu C, Sun P J, et al. Effect of cooling storage capacity on the transient characteristics of the vapor cooled shield for liquid hydrogen storage tank[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1161-1168. | |
| [15] | Yang Y L, Jiang W B, Huang Y H. Experiment on transient thermodynamic behavior of a cryogenic storage tank protected by a composite insulation structure[J]. Energy, 2023, 270: 126929. |
| [16] | Jiang W B, Sun P J, Li P, et al. Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank[J]. Energy, 2021, 231: 120859. |
| [17] | Zhang C G, Li C J, Jia W L, et al. Thermodynamic study on thermal insulation schemes for liquid helium storage tank[J]. Applied Thermal Engineering, 2021, 195: 117185. |
| [18] | Jiang W B, Zuo Z Q, Sun P J, et al. Thermal analysis of coupled vapor-cooling-shield insulation for liquid hydrogen-oxygen pair storage[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8000-8014. |
| [19] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
| Li K, Wen J, Xin B P. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank[J]. CIESC Journal, 2023, 74(9): 3786-3796. | |
| [20] | Liang J J, Li C, Ma Y, et al. Study on transient thermal performance of coupled vapor-cooled shield insulation for liquid hydrogen tank during the on-orbit period[J]. Applied Thermal Engineering, 2025, 266: 125665. |
| [21] | Wang B, Huang Y H, Li P, et al. Optimization of variable density multilayer insulation for cryogenic application and experimental validation[J]. Cryogenics, 2016, 80: 154-163. |
| [22] | Xu Z L, Tan H B, Wu H. Performance comparison of multilayer insulation coupled with vapor cooled shield and different para-ortho hydrogen conversion types[J]. Applied Thermal Engineering, 2023, 234: 121250. |
| [23] | Lv H Y, Zhang Z X, Chen L, et al. Thermodynamic analysis of vapor-cooled shield with para-to-ortho hydrogen conversion in composite multilayer insulation structure for liquid hydrogen tank[J]. International Journal of Hydrogen Energy, 2024, 50: 1448-1462. |
| [24] | Jiang W B, Zuo Z Q, Huang Y H, et al. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank[J]. Cryogenics, 2018, 96: 90-98. |
| [25] | Jiang W B, Yang Y L, Hu C, et al. Experimental study on composite insulation with foam, multilayer and vapor cooled shield for cryogen storage under different vacuum conditions[J]. Cryogenics, 2023, 129: 103604. |
| [26] | Leng Y K, Zhang S Q, Wang X Y, et al. Comparative study on thermodynamic performance of liquid hydrogen storage insulation system incorporating vapor-cooled shield with para-ortho hydrogen conversion by one-dimensional and quasi-two-dimensional model[J]. Energy Conversion and Management, 2024, 321:119068. |
| [27] | Zheng J P, Chen L B, Cui C, et al. Experimental study on composite insulation system of spray on foam insulation and variable density multilayer insulation[J]. Applied Thermal Engineering, 2018, 130: 161-168. |
| [28] | Barone G, Roccella S, Martelli E, et al. DTT thermal shield: preliminary thermal analysis[J]. Fusion Engineering and Design, 2020, 158: 111725. |
| [29] | Kamiya K, Natsume K, Fukui K, et al. Summary of thermal analyses to determine the refrigeration power for the JT-60SA helium refrigerator[J]. Cryogenics, 2019, 99: 51-60. |
| [30] | Lebrun P. Superfluid helium cryogenics for the large hadron collider project at CERN[J]. Cryogenics, 1994, 34: 1-8. |
| [31] | Plachta D W. Hybrid thermal control testing of a cryogenic propellant tank[R]. Canada: Advances in Cryogenic Engineering, 1999. |
| [32] | Nilles M J, Lehmann G A. Thermal contact conductance and thermal shield design for superconducting magnet systems[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1994: 397-402. |
| [33] | Scott R B. Thermal design of large storage vessels for liquid hydrogen and helium[J]. Journal of Research of the National Bureau of Standards, 1957, 58(6): 317. |
| [34] | Zhang M, Zhong H Y, Ren Y, et al. Thermal analysis of the EAST Tokamak[J]. Fusion Engineering and Design, 2021, 168: 112352. |
| [35] | Claudet S, Brodzinski K, Darras V, et al. Helium inventory management and losses for LHC cryogenics: strategy and results for run 1[J]. Physics Procedia, 2015, 67: 66-71. |
| [36] | 李均方, 张瑞春, 陈吉刚. 液氦储罐发展现状及关键技术[J]. 低温与特气, 2021, 39(5): 8-10, 18. |
| Li J F, Zhang R C, Chen J G. Current situation and key technology of liquid helium storage tank[J]. Low Temperature and Specialty Gases, 2021, 39(5): 8-10, 18. |
| [1] | Haolei DUAN, Haoyuan CHEN, Kunfeng LIANG, Lin WANG, Bin CHEN, Yong CAO, Chenguang ZHANG, Shuopeng LI, Dengyu ZHU, Yaru HE, Dapeng YANG. Performance analysis and comprehensive evaluation of thermal management system schemes with low GWP refrigerants [J]. CIESC Journal, 2025, 76(S1): 54-61. |
| [2] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [3] | Xianchao REN, Yaxiu GU, Shaobin DUAN, Wenzhu JIA, Hanlin LI. Experimental study on heat and mass transfer performance of elliptical tube-fin evaporative condenser [J]. CIESC Journal, 2025, 76(S1): 75-83. |
| [4] | Linhui YUAN, Yu WANG. Heat dissipation performance of single server immersion jet liquid cooling system [J]. CIESC Journal, 2025, 76(S1): 160-169. |
| [5] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [6] | Bo HUANG, Hao HUANG, Wen WANG, Longkun HE. Analysis of temperature field of membrane liquid cargo in a LNG carrier [J]. CIESC Journal, 2025, 76(S1): 195-204. |
| [7] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [8] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [9] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [10] | Tengfei ZHU, Ye LIU. Performance analysis of low GWP refrigerant used in new energy vehicle air conditioning [J]. CIESC Journal, 2025, 76(S1): 343-350. |
| [11] | Di WU, Bin HU, Jiatong JIANG. Experimental study and application analysis of R1233zd(E) high temperature heat pump [J]. CIESC Journal, 2025, 76(S1): 377-383. |
| [12] | Ting HE, Kai ZHANG, Wensheng LIN, Liqiong CHEN, Jiafu CHEN. Research on integrated process of cryogenic CO2 removal under supercritical pressure and liquefaction for biogas [J]. CIESC Journal, 2025, 76(S1): 418-425. |
| [13] | Hongxin YU, Ningbo WANG, Yanhua GUO, Shuangquan SHAO. Numerical investigation on the flow and heat transfer characteristics of plate heat exchanger in dynamic ice storage system [J]. CIESC Journal, 2025, 76(S1): 106-113. |
| [14] | Xinquan SHA, Ran HU, Lei DING, Zhenhua JIANG, Yinong WU. Development and testing of an independent two-stage valved linear compressor for space applications [J]. CIESC Journal, 2025, 76(S1): 114-122. |
| [15] | Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant [J]. CIESC Journal, 2025, 76(S1): 140-151. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||