[1] |
Goeppert A, Czaun M, Surya Prakash G K, Olah G A. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere[J]. Energy & Environmental Science, 2012, 5 (7): 7833-7853
|
[2] |
Liu Chang (刘畅), Lu Xiaohua (陆小华). Carbon reduction pattern in China:comparison of CCS and biomethane route[J]. CIESC Journal(化工学报), 2013, 64(1): 7-10
|
[3] |
Liu Z, Grande C A, Li P, Yu J, Rodrigues A E. Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A[J]. Separation Science and Technology, 2011, 46(3): 434-451
|
[4] |
Yang J, Li J, Wang W, Li L, Li J. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: ddr, silicalite-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864
|
[5] |
Harlick P J E, Tezel F H. An experimental adsorbent screening study for CO2 removal from N2[J]. Microporous and Mesoporous Materials, 2004, 76(1/2/3): 71-79
|
[6] |
Sayari A, Belmabkhout Y, Serna-Guerrero R. Flue gas treatment via CO2 adsorption[J]. Chemical Engineering Journal, 2011, 171(3): 760-774
|
[7] |
Sanz R, Calleja G, Arencibia A, Sanz-Pérez E S. Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM[J]. Microporous and Mesoporous Materials, 2012, 158: 309-317
|
[8] |
Yan W, Tang J, Bian Z, Hu J, Liu H. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template[J]. Industrial & Engineering Chemistry Research, 2012, 51 (9): 3653-3662
|
[9] |
Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(6): 2308-2322
|
[10] |
Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568
|
[11] |
Yue M B, Sun L B, Zhuang T T, Dong X, Chun Y, Zhu J H. Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite[J]. Journal of Materials Chemistry, 2008, 18(17): 2044-2050
|
[12] |
Xu H, Guan J, Wu S, Kan Q. Synthesis of beta/MCM-41 composite molecular sieve with high hydrothermal stability in static and stirred condition[J]. Journal of Colloid and Interface Science, 2009, 329(2): 346-350
|
[13] |
Chew T L, Ahmad A L, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2) [J]. Advances in Colloid and Interface Science, 2010, 153(1/2): 43-57
|
[14] |
Serna-Guerrero R, Belmabkhout Y, Sayari A. Modeling CO2 adsorption on amine-functionalized mesoporous silica(Ⅰ): A semi-empirical equilibrium model[J]. Chemical Engineering Journal, 2010, 161(1/2): 173-181
|
[15] |
Bhagiyalakshmi M, Yun L, Anuradha R, Jang H. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption[J]. Journal of Porous Materials, 2010, 17(4): 475-484
|
[16] |
Zhuo S, Huang Y, Hu J, Liu H, Hu Y, Jiang J. Computer simulation for adsorption of CO2, N2 and flue gas in a mimetic MCM-41[J]. The Journal of Physical Chemistry C, 2008, 112(30): 11295-11300
|
[17] |
Jaramillo E, Chandross M. Adsorption of small molecules in LTA zeolites(Ⅰ): NH3, CO2, and H2O in zeolite 4A[J]. Journal of Physical Chemistry B, 2004, 108(52): 20155-20159
|
[18] |
Plant D F, Maurin G, Jobic H, Llewellyn P L. Molecular dynamics simulation of the cation motion upon adsorption of CO2 in faujasite zeolite systems[J]. The Journal of Physical Chemistry B, 2006, 110(29): 14372-14378
|
[19] |
Zhuo S, Huang Y, Hu J, Liu H. Atomistic simulations for adsorption and separation of flue gas in MFI zeolite and MFI/MCM-41 micro/mesoporous composite[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2): 264-273
|
[20] |
Builes S, Vega L F. Understanding CO2 capture in amine- functionalized MCM-41 by molecular simulation[J]. The Journal of Physical Chemistry C, 2012, 116(4): 3017-3024
|
[21] |
Sonwane C G, Li Q. Molecular simulation of RMM: ordered mesoporous SBA-15 type material having microporous ZSM-5 walls[J]. The Journal of Physical Chemistry B, 2005, 109(38): 17993-17997
|
[22] |
Williams J J, Wiersum A D, Seaton N A, Düren T. Effect of surface group functionalization on the CO2/N2 separation properties of MCM-41: a grand-canonical Monte Carlo simulation study[J]. The Journal of Physical Chemistry C, 2010, 114(43): 18538-18547
|
[23] |
Zhou J, Zhao H, Li J, Zhu Y, Hu J, Liu H, Hu Y. CO2 capture on micro/mesoporous composites of (zeolite A)/(MCM-41) with Ca2+ located: computer simulation and experimental studies[J]. Solid State Sciences, 2013, 24: 107-114
|
[24] |
Zhu Y, Zhou J, Hu J, Liu H. The effect of grafted amine group on the adsorption of CO2 in MCM-41: a molecular simulation[J]. Catalysis Today, 2012, 194(1): 53-59
|