CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2588-2619.DOI: 10.3969/j.issn.0438-1157.2014.07.020
Previous Articles Next Articles
ZHANG Zhaoqiang, ZHU Wancheng
Received:
2014-03-19
Revised:
2014-04-02
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China(21276141).
张照强, 朱万诚
通讯作者:
朱万诚
基金资助:
国家自然科学基金项目(21276141);化学工程联合国家重点实验室开放课题(SKL-ChE-12A05)。
CLC Number:
ZHANG Zhaoqiang, ZHU Wancheng. Advances in one-dimensional nanostructured borates:from fundamental thermodynamics to engineering practice[J]. CIESC Journal, 2014, 65(7): 2588-2619.
张照强, 朱万诚. 一维纳米硼酸盐研究进展:从基础热力学到工程实践[J]. 化工学报, 2014, 65(7): 2588-2619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.020
[1] | Ding Y, Wang Z L. Structure analysis of nanowires and nanobelts by transmission electron microscopy[J]. J. Phys. Chem. B, 2004, 108: 12280-12291 |
[2] | Zhu Wancheng(朱万诚). Study on controllable synthesis and mechanism of one-dimensional magnesium borates nanomaterials [D]. Beijing: Tsinghua University, 2008:18 |
[3] | Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(5): 353-389 |
[4] | Byrne M T, Gun'ko Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Adv. Mater., 2010, 22(15): 1672-1688 |
[5] | Su D S, Schlogl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications[J]. Chem. Sus. Chem., 2010, 3(2): 136-168 |
[6] | Liu C, Li F, Ma L P, Cheng H M. Advanced materials for energy storage[J]. Adv. Mater., 2010, 22(8): E28-E62 |
[7] | Han X D, Zhang Z, Wang Z L. Experimental nanomechanics of one-dimensional nanomaterials by in situ microscopy[J]. Nano, 2007, 2(5): 249-271 |
[8] | Espinosa H D, Bernal R A, Minary-Jolandan M. A review of mechanical and electromechanical properties of piezoelectric nanowires[J]. Advanced Materials, 2012, 24(34): 4656-4675 |
[9] | Tao Xinyong, Li Xiaodong. Catalyst-free synthesis, structural, and mechanical characterization of twinned Mg2B2O5 nanowires[J]. Nano Lett., 2008, 8: 505-510 |
[10] | Lu J G, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications[J]. Materials Science and Engineering: R: Reports, 2006, 52(1/2/3): 49-91 |
[11] | Zhu W C, Xiang L, Zhang Q, Zhang X Y, Hu L, Zhu S L. Morphology preservation and crystallinity improvement in the thermal conversion of the hydrothermal synthesized MgBO2(OH) nanowhiskers to Mg2B2O5 nanowhiskers[J]. J. Cryst. Growth, 2008, 310(18): 4262-4267 |
[12] | Zhu W C, Zhu S L, Xiang L. Successive effect of rolling up, oriented attachment and Ostwald ripening on the hydrothermal formation of szaibelyite MgBO2(OH) nanowhiskers[J]. Cryst. Eng. Comm., 2009, 11(9): 1910-1919 |
[13] | Zhu W C, Xiang L, He T B, Zhu S L. Hydrothermal synthesis and characterization of magnesium borate hydroxide nanowhiskers[J]. Chemistry Letters, 2006, 35(10): 1158-1159 |
[14] | Zhu W C, Zhang Q, Xiang L, Wei F, Sun X T, Piao X L, Zhu S L. Flux-assisted thermal conversion route to pore-free high crystallinity magnesium borate nanowhiskers at a relatively low temperature[J]. Crystal Growth & Design, 2008, 8(8): 2938-2945 |
[15] | Xie Xiande(谢先徳), Zheng Mianping(郑绵平), Liu Laibao(刘来保). Borates Minerals(硼酸盐矿物)[M]. Beijing: Science Press, 1965 |
[16] | Parzych G, Mikhailova D, Oswald S, Eckert J R, Ehrenberg H. Study of the conversion reaction mechanism for copper borate as electrode material in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(8): A898-A904 |
[17] | Sohn Y. Photoluminescence imaging of EuBO3, TbBO3, Eu(Ⅲ)-BOx, and Tb(Ⅲ)-BOx nanostructures[J]. Ceramics International, 2014, 40(1): 2467-2475 |
[18] | Ma R, Bando Y, Sato T. Nanowires of metal borates[J]. Appl. Phys. Lett., 2002, 81: 3467-3469 |
[19] | Ma R, Bando Y, Golberg D, et al. Nanotubes of magnesium borate[J]. Angew. Chem. Int. Ed., 2003, 42: 1836-1838 |
[20] | Zhang Jiang(张弜), Zhao Yanming(赵彦明). Synthesis, structure and growth mechanism of magnesium borate nanobelts[J]. Acta Physico-Chimica Sinica(物理化学学报), 2006, 22(1): 110-113 |
[21] | Suganuma K, Fujita T, Suzuki N, et al. Aluminium composites reinforced with a new aluminium borate whisker[J]. Journal of Materials Science Letters, 1990: 633-635 |
[22] | Li J, Wang F, Zhang Y, Wang M, Wang H. Microstructure and mechanical properties of magnesium matrix composite reinforced with magnesium borate whisker[J]. Journal of Composite Materials, 2012, 46(24): 3011-3016 |
[23] | Zheng Mingyi, Wu Kun, Liang Hancen, Kamado S, Kojima Y. Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites[J]. Materials Letters, 2002, 57: 558-564 |
[24] | Li J, Gao S Y, Xia S P, Li B, Hu R Z. Thermochemistry of hydrated magnesium borates[J]. J. Chem. Thermodynamics, 1997, 29: 491-497 |
[25] | Li J, Gao S Y, Li B. Thermochemistry of hydrated potassium and sodium borates[J]. J. Chem. Thermodynamics, 1998, 30: 425-430 |
[26] | Li J, Gao S Y, Li B. Thermochemistry of hydrated lithium borates[J]. J. Chem. Thermodynamics, 1998, 30: 681-688 |
[27] | Zhu L X, Yue T, Gao S Y, Liu Z H, Xia S P. Thermochemistry of rubidium calcium octaborate dodecahydrate[J]. Thermochimica Acta, 2003, 402(1): 241-245 |
[28] | Huang Hongsheng(黄宏升). Synthesis, characterization and thermochemistry of strontium and barium borates[D]. Shanxi: Shanxi Normal University, 2007 |
[29] | Zuo Chuanfeng(左传凤). Synthesis and thermochemisty of the hydrated calcium borates[D]. Shanxi: Shanxi Normal University, 2005 |
[30] | Li Lianqing(李连庆). Synthesis, characterization and crystal structure of novel hydrated alkali metals borates[D]. Shanxi: Shanxi Normal University, 2006 |
[31] | Li P, Liu Z H. Hydrothermal synthesis, characterization, and thermodynamic properties of a new lithium borate, Li3B5O8(OH)2[J]. J. Chem. Eng. Data, 2010, 55: 2682-2686 |
[32] | Liu Z H, Zuo C F, Li S Y. Synthesis and thermochemistry of 2CaO·B2O3·H2O[J]. Thermochimica Acta, 2004, 424(1/2): 59-62 |
[33] | Liu Z H, Wang Y, Huang H S. Synthesis and thermochemistry of BaB2O4· 4H2O and b-BaB2O4[J]. J. Chem. Eng. Data, 2007, 52: 487-490 |
[34] | Liu Z H, Huang H S. Synthesis and thermochemistry of SrB2O4·4H2O and SrB2O4[J]. Thermochimica Acta, 2006, 448: 59-62 |
[35] | Rama Kumar A, Alexandra N, Hillary T B, William H C. Thermochemistry and aqueous solubilities of hydrotalcite-like solids[J]. Science, 2002, 296(26): 721-723 |
[36] | Mostafa A T M G, Eakman J M, Yarbro S L. Prediction of standard heats and Gibbs free energies formation of solid inorganic salts from group contributions[J]. Ind. Eng. Chem. Res., 1995, 34: 4577-4582 |
[37] | Li J, Li B, Gao S. Calculation of thermodynamic properties of hydrated borates by group contribution method[J]. Phys. Chem. Minerals, 2000, 27: 342-346 |
[38] | Zhu Wancheng(朱万诚), Zhang Xueyi(张学一), Zhang Qiang(张强), Xiang Lan(向兰), Zhu Shenlin(朱慎林). Subunit contribution model for thermodynamic properties of borates and its application in hydrothermal synthesis of MgBO2(OH) nanowhiskers[J]. CIESC Journal(化工学报), 2013, 64(2): 443-451 |
[39] | Liu Z H, Hu M C. New synthetic method and thermochemistry of szaibelyite[J]. Thermochimica Acta, 2004, 411: 27-29 |
[40] | Derun E M, Senberber F T. Characterization and thermal dehydration kinetics of highly crystalline mcallisterite, synthesized at low temperatures [J]. The Scientific World Journal, 2014: 985185(article ID) |
[41] | Kitamura T, Sakane K, Wada H. Formation of needle crystals of magnesium pyroborate[J]. J.Mater. Sci. Lett., 1988, 7: 467-469 |
[42] | Sakane K, Kitamura T, Wada H, et al. Effect of mixing state of raw material in the preparation of Mg2B2O5 whiskers[J]. Adv. Powder Technol., 1992, 3(1): 39-46 |
[43] | Duan Yu(段玉), Lu Guimin(路贵民), Song Xingfu(宋兴福), Sun Shuying(孙淑英), Yu Jianguo(于建国). Preparation and growth mechanism of magnesium borate whiskers with high aspect ratio[J]. Journal of Inorganic Materials(无机材料学报), 2011, 26(4): 364-368 |
[44] | Gao Feng(高枫), Fan Jungang(范俊刚), Sun Huaiyu(孙怀宇), Wang Zhumin(王祝敏), Pei Shihong(裴世红). The preparation and characterization of magnesium borate whiskers[J]. Applied Chemical Industry(应用化工), 2010, 39(10): 1537-1538 |
[45] | Wang Licong(王俐聪), Zhang Yi(张旖), Wang Yuqi(王玉琪), Huang Xiping(黄西平), Zhang Yushan(张雨山). Effect of calcination conditions on composition and morphology of magnesium borate whisker[J]. Inorganic Chemical Industry(无机盐工业), 2010, 42(5): 22-23 |
[46] | Wang Licong(王俐聪), Wang Yuqi(王玉琪), Zhang Yushan(张雨山), Zhang Yi(张旖), Huang Xiping(黄西平), Zhang Jiakai(张家凯). Study on scale up experiment of magnesium borate (Mg2B2O5) whisker and its application[J]. Shandong Chemical Industry(山东化工), 2011, 40(7): 5-8 |
[47] | Zhang Yi(张旖), Wang Licong(王俐聪), Wang Yuqi(王玉琪), Zhang Yushan(张雨山), Huang Xiping(黄西平). Preparation of magnesium borate (Mg2B2O5) whisker using bitter brine[J]. Chemical Industry and Engineering(化学工业与工程), 2010, 27(2): 128-131 |
[48] | Bian Shaoju(边绍菊), Li Jie(李洁), Nai Xueying(乃学瑛), Li Wu(李武). Preparation of Mg2B2O5 whisker and preliminary study on its growth mechanism[J]. Journal of Saltlake Research(盐湖研究), 2007, 15(2): 45-49 |
[49] | Jin Zhiliang(靳治良), Li Wu(李武), Zhang Zhihong(张志宏). Study on synthesis of magnesium borate whisker[J]. Inorganic Chemicals Insustry(无机盐工业), 2003, 35(3): 22-24 |
[50] | Li Y, Fan Z, Lu J G, et al. Synthesis of magnesium borate (Mg2B2O5) nanowires by chemical vapor deposition method[J]. Chem. Mater., 2004, 16(13): 2512-2514 |
[51] | Li Y, Chang R P H. Synthesis and characterization of aluminum borate (Al18B4O33, Al4B2O9) nanowires and nanotubes[J]. Materials Chemistry and Physics, 2006, 97(1): 23-30 |
[52] | Sears G W. A mechanism of whisker growth[J]. Acta Metall., 1955, 3(4): 367-369 |
[53] | Luo Junjie(罗俊杰). Synthesis and rare earth doping of GaMgBO4 nanorods[J]. Journal of Yanan University:Natural Science Edition(延安大学学报:自然科学版), 2013, 32: 45-47 |
[54] | Li S, Xu D, Shen H, Zhou J, Fan Y. Synthesis and Raman properties of magnesium borate micro/nanorods[J]. Materials Research Bulletin, 2012, 47(11): 3650-3653 |
[55] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Green co-precipitation byproduct-assisted thermal conversion route to submicron Mg2B2O5 whiskers[J]. Cryst. Eng. Comm., 2011, 13(5): 1654-1663 |
[56] | Liu X F, Zhu W C, Cui X L, Liu T, Zhang Q. Facile thermal conversion route synthesis, characterization, and optical properties of rod-like micron nickel borate[J]. Powder Technology, 2012, 222: 160-166 |
[57] | Li R, Bao L, Li X. Synthesis, structural, optical and mechanical characterization of SrB2O4 nanorods[J]. Cryst. Eng. Comm., 2011, 13(19): 5858-5862 |
[58] | Chen Aimin(陈爱民), Xu Shufen(徐淑芬), Ni Zheming(倪哲明). Synthesis, structure and growth mechanism of aluminum borate nanorods[J]. Acta Phys.Chim. Sin.(物理化学学报), 2009, 25(12): 2570-2574 |
[59] | Chen Aimin(陈爱民), Hu Fengchao(胡锋超), Gu Pei(顾培), Ni Zheming(倪哲明). Sol-gel synthesis, characterization of nickel borate nanorods[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2011, 27(1): 30-34 |
[60] | Menaka Sharma S, Ramanujachary K V, Lofland S E, Ganguli A K. Controlling the size and morphology of anisotropic nanostructures of nickel borate using microemulsions and their magnetic properties[J]. Journal of Colloid and Interface Science, 2011, 360(2): 393-397 |
[61] | Zheng Y H, Wang Z C, Tian Y M, Qu Y N, Li S L, An D M, Chen X, Guan S. Synthesis and performance of 1D and 2D copper borate nano/microstructures with different morphologies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1/2/3): 156-161 |
[62] | Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology [J]. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166 |
[63] | Xu Bingshe, Li Tianbao, Zhang Yan, Zhang Zhuxia, Liu Xuguang, Zhao Junfu. New synthetic route and characterization of magnesium borate nanorods[J]. Crystal Growth & Design, 2008, 8(4): 1218-1222 |
[64] | Liu Jinping, Li Yuanyuan, Huang Xintang, Li Zikun, Li Guangyun, Zeng Haibo. Hydrothermal synthesis of single-crystal szaibelyite MgBO2(OH) nanobelt as a new host material for red-emitting rare-earth ions[J]. Chem. Mater., 2008, 20: 250-257 |
[65] | Zhu W C, Xiang L, Zhang X Y, Zhu S L. Influence of process parameters on hydrothermal formation of magnesium borate hydroxide nanowhiskers[J]. Mater. Res. Innov., 2007, 11(4): 188-192 |
[66] | Zhu W C, Zhang X Y, Xiang L, Zhu S L. Hydrothermal formation of the head-to-head coalesced szaibelyite MgBO2(OH) nanowires[J]. Nanoscale Research Letters, 2009, 4(7): 724-731 |
[67] | Zhu W C, Zhang Q, Xiang L, Zhu S L. Repair the pores and preserve the morphology: formation of high crystallinity 1D nanostructures via the thermal conversion route[J]. Crystal Growth & Design, 2011, 11(3): 709-718 |
[68] | Zhu W C, Wang R G, Zhu S L, Zhang L L, Cui, X L, Zhang H, Piao X L, Zhang Q. Green noncorrosive and easy scale-up hydrothermal-thermal conversion: a feasible solution to mass production of magnesium borate nanowhiskers[J]. ACS Sustainable Chemistry & Engineering, 2014, DOI: 10.1021/sc400481j |
[69] | Song S J, Nai X Y, Li W, Zhu C C, Meng Q F. Hydrothermal synthesis of calcium borate whiskers[J]. Advanced Materials Research, 2011, 399/400/401: 693-697 |
[70] | Bao L H, Xu Z H, Li R, Li X D. Catalyst-free synthesis and structural and mechanical characterization of single crystalline Ca2B2O5·H2O nanobelts and stacking faulted Ca2B2O5 nanogrooves[J]. Nano Letters, 2010, 10(1): 255-262 |
[71] | Zhu W C, Zhang X, Wang X L, Zhang H, Zhang Q, Xiang L. Short belt-like Ca2B2O5·H2O nanostructures: hydrothermal formation, FT-IR, thermal decomposition, and optical properties[J]. Journal of Crystal Growth, 2011, 332(1): 81-86 |
[72] | Zhu W C, Wang X L, Zhang X, Zhang H, Zhang Q. Hierarchical laminar superstructures of rhombic priceite (Ca4B10O19·7H2O): facile hydrothermal synthesis, shape evolution, optical, and thermal decomposition properties[J]. Crystal Growth & Design, 2011, 11(7): 2935-2941 |
[73] | Li Rui, Tao Xinyong, Li Xiaodong. Low temperature, organic-free synthesis of Ba3B6O9(OH)6 nanorods and β-BaB2O4 nanospindles[J]. Journal of Materials Chemistry, 2009, 19: 983-987 |
[74] | Qu Guangyuan, Hu Zhifang, Wang Yipei, Yang Qing, Tong Limin. Synthesis of optical-quality single-crystal β-BaB2O4 microwires and nanowires[J]. Advanced Functional Materials, 2013, 23(10): 1232-1237 |
[75] | He Guiping(何贵平), Zhang Jiang(张弜), Yao Ruohe(姚若河). Preparation, structure and photoluminescence of Er3+ and Ce3+/Ce4+ doped b-BaB2O4 nanorods[J]. Acta Phys. -Chim. Sin.(物理化学学报), 2010, 26(3): 685-690 |
[76] | Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Prog. Cryst. Growth Charact. Mater., 2007, 53: 117-166 |
[77] | Shen X P, Miao H J, Zhao H, Xu Z. Synthesis, characterization and magnetic properties of Co3O4 nanotubes[J]. Applied Physics A, 2007, 91(1): 47-51 |
[78] | Fang Y P, Xu A W, You L P, Song R Q, Yu J C, Zhang H X, Li Q, Liu H Q. Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes[J]. Advanced Functional Materials, 2003, 13(12): 955-960 |
[79] | Yan T, Zhang D, Shi L, Li H. Facile synthesis, characterization, formation mechanism and photoluminescence property of Eu2O3 nanorods[J]. Journal of Alloys and Compounds, 2009, 487(1): 483-488 |
[80] | Zhu W C, Zhang L Y, Cui X L, Zhang Q. Efficient synthesis of orthorhombic lithium borate hydroxide micro-rods and their thermal conversion to lithium borate[J]. Powder Technology, 2011, 210(1): 67-72 |
[81] | Kumari L, Li W Z, Kulkarni S, Wu K H, Chen W, Wang C, Vannoy C H, Leblanc R M. Effect of surfactants on the structure and morphology of magnesium borate hydroxide nanowhiskers synthesized by hydrothermal route[J]. Nanoscale Research Letters, 2009, 5(1): 149-157 |
[82] | Liu N, Zhao D, Yu L X, Zheng K Z, Qin W P. Controlled synthesis and photoluminescence of europium doped barium borate nanorods, nanowires, and flower-like assemblies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1/2/3): 124-129 |
[83] | Shi X X, Li M, Yang H, Chen S P, Yuan L J, Zhang K L, Sun J T. PEG-300 assisted hydrothermal synthesis of 4ZnO·B2O3·H2O nanorods[J]. Materials Research Bulletin, 2007, 42(9): 1649-1656 |
[84] | Zhou Jie(周杰), Su Dagen(苏达根), Zhong Mingfeng(钟明峰). Hydrothermal synthesis and flame-retardant properties of 4ZnO·B2O3·H2O microrods[J]. Journal of South China University of Technology: Natural Science Edition(华南理工大学学报: 自然科学版), 2007, 35(12): 107-110 |
[85] | Huang Hongsheng(黄宏升). Review of the progress of borate luminescent materials[J]. Journal of Ankang University(安康学院学报), 2011, 23: 92-94 |
[86] | Pan G H, Song H W, Bai X, Liu Z X, Yu H Q, Di W H, Li S W, Fan L B, Ren X G, Lu S Z. Novel energy-transfer route and enhanced luminescent properties in YVO4:Eu3+/YBO3:Eu3+ composite[J]. Chem. Mater., 2006, 18: 4526-4532 |
[87] | Song H W, Pan G H, Bai X, Dong B, Zhang X T, Hark S K. Electrospinning preparation, structure, and photoluminescence properties of YBO3:Eu3+ nanotubes and nanowires[J]. Chem. Mater., 2008, 20: 4762-4767 |
[88] | Sun H T, Shimaoka F, Fujii M, et al. One-step synthesis and near-infrared luminescent properties of Er3+ and Ni2+ doped single-crystalline Al18B4O33 nanorods [J]. Nanotechnology, 2009, 20(3): 35-39 |
[89] | Wei Zhenggui, Sun Lingdong, Liao Chunsheng, et al. Synthesis and size dependent luminescent properties of hexagonal (Y ,Gd)BO3:Eu nanocrystals [J]. Journal of Materials Chemistry, 2002, 12(12): 3665-3670 |
[90] | Jia G,You H P, Song Y H, et al. Facile chemical conversion synthesis and luminescence properties of uniform Ln3+(Ln=Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks[J]. Inorganic Chemistry, 2009, 48(21):10193-10201 |
[91] | Liu Jichun(刘继春), Yu Zhuoli(于卓立), Chen Liang(陈梁), et al. Halogen-free flame retardant Mg(OH)2-Al(OH)3-MRP/HIPS composites[J]. Acta Materiae Compositae Sinica(复合材料学报), 2013, 30: 35-43 |
[92] | Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites[J]. Materials Science and Engineering: R: Reports, 2009, 63(3): 100-125 |
[93] | Marosfoi B B, Garas S, Bodzay B, et al. Flame retardancy study on magnesium hydroxide associated with clays of different morphology in polypropylene matrix[J]. Polymers for Advanced Technologies, 2008, 19(6): 693-700 |
[94] | Beyer G. Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate[J]. Fire and Materials, 2001, 25(5): 193-197 |
[95] | Gui H, Zhang X H, Dong W F, et al. Flame retardant synergism of rubber and Mg(OH)2 in EVA composites[J]. Polymer, 2007, 48(9): 2537-2541 |
[96] | Kiliaris P, Papaspyrides C D. Polymer/layered silicate(clay) nanocomposites: an overview of flame retardancy[J]. Progress in Polymer Science, 2010, 35(7): 902-958 |
[97] | Kim S. Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene[J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(9): 936-944 |
[98] | Yeh J T, Yang H M, Huang S S. Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene[J]. Polymer Degradation and Stability, 1995, 50(2): 229-234 |
[99] | Keszei S, Anna P, Marosi G, et al. Surface modified aluminium hydroxide in flame retarded noise damping sheets[J]. Macromolecular Symposia, 2003, 202: 235-243 |
[100] | Anna P, Zimonyi E, Marton A, et al. Surface treated cellulose fibres in flame retarded PP composites[J]. Macromolecular Symposia, 2003, 202: 245-254 |
[101] | Bertalan G, Marosi G, Anna P, et al. Role of interface modification in filled and flame-retarded polymer systems[J]. Solid State Ionics, 2001, 141: 211-215 |
[102] | Chen T, Deng J C, Wang L S, Feng G. Preparation and characterization of nano-zinc borate by a new method[J]. Journal of Materials Processing Technology, 2009, 209(8): 4076-4079 |
[103] | Li Jiusheng(李久盛), Hao Lifeng(郝利峰), Xu Xiaohong(徐小红), Ren Tianhui(任天辉). Research on preparation and tribological properties of calcium borate nanoparticles in the liquid form[J]. Nano-processing Technique(纳米加工工艺), 2011, 8(4): 40-44 |
[104] | Zhu W C, Li G D, Zhang Q, Xiang L, Zhu S L. Hydrothermal mass production of MgBO2(OH) nanowhiskers and subsequent thermal conversion to Mg2B2O5 nanorods for biaxially oriented polypropylene resins reinforcement[J]. Powder Technology, 2010, 203(2): 265-271 |
[105] | Li J G, Wang F F, Zhang Y J, Wang M L, Wang H W. Microstructure and mechanical properties of magnesium matrix composite reinforced with magnesium borate whisker[J]. Journal of Composite Materials, 2012, 46(24): 3011-3016 |
[106] | Tjong S C, Jiang W. Mechanical and thermal behavior of polycarbonate composites reinforced with aluminum borate whiskers[J]. Journal of Applied Polymer Science, 1999, 73(11): 2247-2253 |
[107] | Tao X Y, Wang X N, Li X D. Nanomechanical characterization of one-step combustion-synthesized Al4B2O9 and Al18B4O33 nanowires[J]. Nano Letters, 2007, 7(10): 3172-3176 |
[108] | Thind K S, Sharma G, Rajendran V, et al. Structural and acoustic investigations of calcium borate glasses[J]. Physica Status Solidi (a), 2006, 203(10): 2356-2364 |
[109] | Cao Mingli(曹明莉), Wei Jianqiang(位建强). Research progress of CaCO3 whisker and application in composite materials[J]. New Chemical Materials(化工新型材料), 2010, 38: 11-13 |
[110] | Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: a review[J]. RSC Advances, 2012, 2(20): 7617-7632 |
[111] | Dong Y Z, Zhao Y M, Shi Z D, An X N, Fu P, Chen L. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material[J]. Electrochimica Acta, 2008, 53(5): 2339-2345 |
[112] | Janssen Y, Middlemiss D S, Bo S H, Grey C P, Khalifah P G. Structural modulation in the high capacity battery cathode material LiFeBO3[J]. Journal of the American Chemical Society, 2012, 134(30): 12516-12527 |
[113] | Rowsell J L C, Gaubicher J, Nazar L F. A new class of materials for lithium-ion batteries iron(Ⅲ) borates[J]. Journal of Power Sources, 2001: 254-257 |
[114] | Okada S, Tonuma T, Uebo Y, Yamaki J I. Anode properties of calcite-type MBO3 (M:V, Fe)[J]. Journal of Power Sources, 2003, 119/120/121: 621-625 |
[115] | Seo D H, Park Y U, Kim S W, Park I, Shakoor R A, Kang K. First-principles study on lithium metal borate cathodes for lithium rechargeable batteries[J]. Physical Review B, 2011, 83(20): 205127 |
[116] | Chen L, Zhao Y M, An X N, Liu J M, Dong Y Z, Chen Y H, Kuang Q. Structure and electrochemical properties of LiMnBO3 as a new cathode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2010, 494(1/2): 415-419 |
[117] | Wang S M, Huang X J, Chen L Q. Activation of LiMnBO glass as cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2000, 10(6): 1465-1467 |
[118] | Shi Lingbin(石玲斌). Preparation of zinc borate[J]. Journal of Kunming University of Science and Technology: Science and Technology(昆明理工大学学报: 理工版), 2003, 28(2): 14-16 |
[119] | Wang Yuhong (王玉红). Study on synthesis and scale up of nanoparticles of calcium carbonate by high gravity reaction precipitation[D]. Beijing: Beijing University of Chemical Technology, 1998 |
[120] | Zhu Wancheng(朱万诚), Chen Jianfeng(陈建峰), Wang Yuhong(王玉红). Synthesis and characterization of ultra-fine calcium carbonate whiskers in high-gravity[J]. Chinese Journal of Chemical Physics(化学物理学报), 2004, 17(2): 175-178 |
[121] | Zhu Wancheng(朱万诚), Chen Jianfeng(陈建峰), Wang Yuhong(王玉红). Experimental study on the synthesis of ultra-fine calcium carbonate whiskers in rotating packed bed reactor[J]. Material Science & Technology(材料科学与工艺), 2005, 13(1): 30-33 |
[122] | Huang J Q, Zhang Q, Zhao M Q, et al. A review of the large-scale production of carbon nanotubes: the practice of nanoscale process engineering[J]. Chinese Science Bulletin, 2012, 57(2/3): 157-166 |
[123] | Zhang Q, Huang J Q, Zhao M Q, et al. Carbon nanotube mass production: principles and processes[J]. Chem. Sus. Chem., 2011, 4(7): 864-889 |
[124] | Zhang Q, Zhao M Q, Huang J Q, et al. Mass production of aligned carbon nanotube arrays by fluidized bed catalytic chemical vapor deposition[J]. Carbon, 2010, 48(4): 1196-1209 |
[125] | Wei F, Zhang Q, Qian W Z, et al. The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: a multiscale space-time analysis[J]. Powder Technology, 2008, 183(1): 10-20 |
[1] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[2] | Juan ZHAO, Mengcheng WU, Jinglei LEI, Lingjie LI. One-step hydrothermal method toward preparation of Ni3S2@Mo2S3 high-efficient catalyst for oxygen evolution reaction in water electrolysis [J]. CIESC Journal, 2022, 73(4): 1575-1584. |
[3] | Yanshan WANG, Xiaochao ZHU, Yingjin SONG, Yihang LI. Study on anaerobic digestion pretreatment coupled with hydrothermal carbonization of grass [J]. CIESC Journal, 2022, 73(2): 904-913. |
[4] | Tao JU, Guohui LI, Fengxia GENG. One-step synthesis of two-dimensional Ti3C2 and its electrochemical performance [J]. CIESC Journal, 2022, 73(2): 951-959. |
[5] | Xiaoyang YANG, Baofeng WANG, Xutao SONG, Fengling YANG, Fangqin CHENG. Migration of sulfur and nitrogen during co-hydrothermal carbonization process of sewage sludge and high-sulfur coal [J]. CIESC Journal, 2022, 73(11): 5211-5219. |
[6] | Shan CHENG, Rui LUO, Hong TIAN, Zhenqi WANG, Jingchun HUANG, Yu QIAO. Effect of hydrothermal carbonization temperature on transformation path of organic nitrogen in sludge [J]. CIESC Journal, 2022, 73(11): 5220-5229. |
[7] | Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[8] | Wenfa MAO, Sainan ZHENG, Nianjun LUO, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation and optimization on oxidative coupling reaction of CO to dimethyl oxalate in a tubular fixed bed reactor [J]. CIESC Journal, 2022, 73(1): 284-293. |
[9] | HAN Wei, ZHAN Jun, SHI Hong, ZHAO Dong, CAI Shaojun, PENG Xianghong, XIAO Biao, GAO Yu. Synthesis and properties of nitrogen and sulfur codoped graphene quantum dots [J]. CIESC Journal, 2021, 72(S1): 530-538. |
[10] | LI Tengfei, MIAO Yun, YANG Liu, WANG Longyao, ZHU Huacheng. Microwave enhanced ion exchange technology of Y molecular sieve [J]. CIESC Journal, 2021, 72(S1): 406-412. |
[11] | Yuming ZHANG, Lifeng WAN, Juntao GUAN, Haipeng SONG, Hang YANG, Shiqiu GAO. Fundamental study on the fluid coking behavior of Dagang oil slurry and preparation of aromatic-rich oil [J]. CIESC Journal, 2021, 72(8): 4325-4335. |
[12] | XIA Dong, HUANG Peng, LI Heng. Joule-heating studies of electrically conducting three-dimensional graphene aerogels prepared by hydrothermal assembly [J]. CIESC Journal, 2021, 72(7): 3839-3848. |
[13] | ZHANG Shaobo, FANG Li, GAO Xuetao, CHENG Wenting. Controllable synthesis of magnesium hydroxide sulfate hydrate whiskers and effects of different ions [J]. CIESC Journal, 2021, 72(6): 3031-3040. |
[14] | SONG Jiangtao, YUAN Fei, YU Yan, GUO Yafei, DENG Tianlong. Experimental and predictive phase equilibria for the quaternary system LiB5O8 + NaB5O8 + KB5O8 + H2O at 298.15 K [J]. CIESC Journal, 2021, 72(6): 3179-3187. |
[15] | XIN Mudi, XING Enhui. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking [J]. CIESC Journal, 2021, 72(5): 2657-2668. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||