[1] |
Green A A, Hersam M C. Emerging methods for producing monodispersing graphene dispersions [J]. J. Phys. Chem. Lett., 2010, (1): 544.
|
[2] |
Li Ji (李吉), Wei Tong (魏彤), Yan Jun (闫俊), et al. Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors [J]. CIESC Journal (化工学报), 2014, 65 (7): 2849-2854.
|
[3] |
Jia Haipeng (贾海鹏), Su Xunjia (苏勋家), Hou Genliang (侯根良), et al. Molecular dynamics simulation of interactions on graphene/ polyaniline nanocomposites interface [J]. CIESC Journal (化工学报), 2013, 64 (5): 1862-1868.
|
[4] |
Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol., 2008, 3 (9): 563-568.
|
[5] |
Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions [J]. J. Am. Chem. Soc., 2009, 131 (10): 3611-3620.
|
[6] |
Green A A, Hersam M C. Solution phase production of graphene with controlled thickness via density differentiation [J]. Nano. Lett., 2009, 9 (12): 4031-4036.
|
[7] |
Lotya M, King P J, Khan U, et al. High-concentration, surfacatn-stabilized graphene dispersions [J]. ACS Nano, 2010, 4 (6): 3155-3162.
|
[8] |
Wang D H, Choi D W, Li J, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano, 2009, 3 (4): 907-914.
|
[9] |
Wang D H, Kou R, Choi D W, et al. Ternary self-assembly of ordered metal oxide-graphene nanocomposities for electrochemical energy storage [J]. ACS Nano, 2010, 4 (3): 1587-1595.
|
[10] |
Kiraly Z, Findenegg G H. Calorimetric evidence of the formation of half-cylindrical aggregates of a cationic surfactant at the graphite/water interface [J]. J. Phys. Chem. B, 1998, 102 (7): 1203-1211.
|
[11] |
Jaschke M, Butt H J, Gaub H E, et al. Surfactant aggregates at a metal surface [J]. Langmuir, 1997, 13 (6): 1381-1384.
|
[12] |
Schatz G C. Using theory and computation to model nanoscale properties [J]. PNAS, 2007, 104 (17):6885-6892.
|
[13] |
Dominguez H. Structure of the sodium dodecyl sulfate surfactant on a solid surface in different NaCl solutions [J]. Langmuir, 2009, 25 (16): 9006-9011.
|
[14] |
Xu Z J, Yang X N, Yang Z. A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies [J]. Nano. Lett., 2010, 10 (3): 985-991.
|
[15] |
Dominguez H. Structure of the SDS/1-dodecanol surfactant mixture on a graphite surface: a computer simulation study [J]. J. Colloid Interface Sci., 2010, 345 (2): 293-301.
|
[16] |
Suttipong M, Tummala N R, Kitiyanan B, et al. Role of surfactant molecular structure on self-assembly: aqueous SDBS on carbon nanotubes [J]. J. Phys. Chem. C, 2011, 115 (35): 17286-17296.
|
[17] |
Carvalho E J F, dos Santos M S. Role of surfactant in carbon nanotubes density gradient separation [J]. ACS Nano., 2010, 4 (2): 765-770.
|
[18] |
Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114 (25): 10024-10035.
|
[19] |
Walther J H, Jaffe R, Halicioglu T, et al. Carbon nanotubes in water: structural characteristics and energetics [J]. J. Phys. Chem. B, 2001, 105 (41): 9980-9987.
|
[20] |
Tummala N R, Striolo A. Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface [J]. J. Phys. Chem. B, 2008, 112 (7): 1987-2000.
|
[21] |
Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentials [J]. J. Phys. Chem., 1987, 91 (24): 6269-6271.
|
[22] |
Chialvo A A, Cummings P T. Aqua ions-graphene interfacial and confinement behaviour: insights from isobaric-isothermal molecular dynamics [J]. J. Phys. Chem. A, 2011, 115 (23): 5918-5927.
|
[23] |
Predota M, Zhang Z, Fenter P, et al. Electric double layer at the rutile (110) surface (2): Adsorption of ions from molecular dynamics and X-ray experiments [J]. J. Phys. Chem. B, 2004, 108 (32): 12061-12072.
|
[24] |
Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes [J]. J. Phys. Chem. B, 2003, 107 (6): 1345-1352.
|
[25] |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comp. Phys., 1995, 117 (1): 1-19.
|
[26] |
Darden T, York D, Pedersen L. Particle mesh Ewald an N-log (N) method for Ewald sums in large systems [J]. J. Chem. Phys., 1993, 98 (12): 10089-10092.
|
[27] |
Tummala N R, Grady B P, Striolo A. Lateral confinement effects on the structural properties of surfactant aggregates : SDS on graphene [J]. Phys. Chem. Chem. Phys., 2010, (12): 13137-13143.
|
[28] |
Mak Kin F, Shan J, Heinz T F. Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence [J]. Phys. Rev. Lett., 2010, 104: 176404.
|
[29] |
Wanless E J, Ducker W A. Organization of sodium dodecyl sulfate at the graphite-solution interface [J]. J. Phys. Chem., 1996, 100 (8): 3207-3214.
|
[30] |
Dominguez H. Self-aggregation of the SDS surfactant at a solid-liquid interface [J]. J. Phys. Chem. B, 2007, 111 (16): 4054-4059.
|
[31] |
Dominguez H. Structural transition of the sodium dodecyl sulfate (SDS) surfactant induced by changes in surfactant concentration [J]. J. Phys. Chem. B, 2011, 115 (43): 12422-12428.
|
[32] |
Tummala N R, Striolo A. SDS Surfactants on carbon nanotubes: aggregate morphology [J]. ACS Nano., 2009, 3 (3): 595.
|
[33] |
Lin S C, Shih C J, Strano M S, et al. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions [J]. J. Am. Chem. Soc., 2011, 133 (32): 12810-12823.
|