[1] |
ERDO?AN M E. On the flows produced by sudden application of a constant pressure gradient or by impulsive motion of a boundary [J]. International Journal of Non-Linear Mechanics, 2003, 38(5): 781-797. DOI: 10.1016/S0020-7462(01)00133-0.
|
[2] |
TING T W. Certain non-steady flows of second-order fluids [J]. Archive for Rational Mechanics and Analysis, 1963, 14(1): 1-26. DOI: 10.1007/BF00250690.
|
[3] |
TAN W C, PAN W X, XU M Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. International Journal of Non-Linear Mechanics, 2003, 38(5): 645-650. DOI: 10.1016/S0020-7462(01)00121-4.
|
[4] |
潘文潇, 谭文长. 广义 Maxwell 黏弹性流体在两平板间的非定常流动[J]. 力学与实践, 2003, 25(1): 19-22. DOI: 10.3969/j.issn. 1000-0879.2003.01.006. PAN W X, TAN W C. An unsteady flow of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. Mechanics in Engineering, 2003, 25(1): 19-22. DOI: 10.3969/j.issn. 1000-0879.2003.01.006.
|
[5] |
PAPANASTASIOU T C, GEORGIOU G C, ALEXANDROU A N. Viscous Fluid Flow [M]. Washington, D.C.: CRC Press, 1999: 209.
|
[6] |
BOSE D, BASU U. Incompressible viscoelastic flow of a generalised Oldroyed-B fluid through porous medium between two infinite parallel plates in a rotating system [J]. International Journal of Computer Applications, 2013, 79(1): 13-20. DOI: http://dx.doi.org/10. 5120/13704-1452.
|
[7] |
郭霄怡, 徐明瑜. 广义 Oldroyd-B 流体的非定常 Couette 流的精确解[J]. 山东大学学报(理学版), 2009, 44(10): 60-63. GUO X Y, XU M Y. An exact solution of unsteady Couette flow of generalized Oldroyd-B fluid [J]. Journal of Shandong University (Natural Science), 2009, 44(10): 60-63.
|
[8] |
HAYAT T, SAJID M, AYUB M. A note on series solution for generalized Couette flow [J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(8): 1481-1487. DOI: 10.1016/j.cnsns.2006.02.009.
|
[9] |
ATHAR M, FETECAU C, KAMRAN M, et al. Exact solutions for unsteady axial Couette flow of a fractional Maxwell fluid due to an accelerated shear [J]. Nonlinear Analysis: Modelling and Control, 2011, 16(2): 135-151.
|
[10] |
BERNARDIN D, NOUAR C. Transient Couette flows of Oldroyd's fluids under imposed torques [J]. Journal of Non-Newtonian Fluid Mechanics, 1998, 77(3): 201-231. DOI: 10.1016/S0377-0257(97)00130-4.
|
[11] |
PARTER S V, RAJAGOPAL K R. Remarks on the flow between two parallel rotating plates [R]. Madison: Mathematics Research Center, Wisconsin Univ., 1984.
|
[12] |
RAJAGOPAL K R. Flow of viscoelastic fluids between rotating disks [J]. Theoretical and Computational Fluid Dynamics, 1992, 3(4): 185-206. DOI: 10.1007/BF00417912.
|
[13] |
LAI C Y, RAJAGOPAL K R, SZERI A Z. Asymmetric flow between parallel rotating disks [J]. Journal of Fluid Mechanics, 1984, 146: 203-225. DOI: http://dx.doi.org/10.1017/S0022112084001828.
|
[14] |
DANIEL K S. Unsteady Couette flow with transpiration in a rotating system [J]. Global Journal of Science Frontier Research, 2013, 13(5): 14-26.
|
[15] |
SETH G S, JANA R N, MAITI M K. Unsteady hydromagnetic Couette flow in a rotating system [J]. International Journal of Engineering Science, 1982, 20(9): 989-999. DOI: 10.1016/0020-7225(82)90034-9.
|
[16] |
SHEIKHOLESLAMI M, ABELMAN S, GANJI D D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation [J]. International Journal of Heat and Mass Transfer, 2014, 79: 212-222. DOI: 10.1016/j.ij heatmasstransfer. 2014.08.004.
|
[17] |
DANISH M, KUMAR S, KUMAR S. Exact analytical solutions for the Poiseuille and Couette-Poiseuille flow of third grade fluid between parallel plates[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3): 1089-1097. DOI: 10.1016/j.cnsns. 2011.07.037.
|
[18] |
VARSAKELIS C, PAPALEXANDRIS M. Linear stability analysis of unidirectional Couette flows of inhomogeneous fluid-like bodies [J]. Proceedings of the Royal Society of London, Series A Mathematical and Physical Sciences, 2014.
|
[19] |
RAVEY J C, DOGNON M, LUCIUS M. Transient rheology in a new type of Couette apparatus [J]. Rheologica Acta, 1980, 19(1): 51-59. DOI: 10.1007/BF01523854.
|
[20] |
RAVEY J C, IKEMOTO S, STOLTZ J F. Transient rheology in a new type of couette apparatus. Application to blood [J]. Rheologica Acta, 1989, 28(5): 423-434. DOI: 10.1007/BF01336810.
|
[21] |
BARAVIAN C, QUEMADA D. Correction of instrumental inertia effects in controlled stress rheometry[J]. The European Physical Journal Applied Physics, 1998, 2(2): 189-195. DOI: http://dx.doi.org/10. 1051/epjap:1998183.
|
[22] |
GLEISSLE W. Two simple time-shear rate relations combining viscosity and first normal stress coefficient in the linear and non-linear flow range [J]. Rheology, 1980, 2: 457-462. DOI: 10.1007/978-1-4684-3743-0_85.
|
[23] |
HUA C C. Investigations on several empirical rules for entangled polymers based on a self-consistent full-chain reptation theory [J]. J. Chem. Phys., 2000, 112(18): 8176-8186. DOI: http://dx.doi.org/10.1063/1.481418.
|
[24] |
BORG T, PAAKKONEN E J. Linear viscoelastic models(Part Ⅱ): Recovery of the molecular weight distribution using viscosity data [J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 156(1): 129-138. DOI: 10.1016/j.jnnfm.2008.07.010.
|