CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 3222-3231.DOI: 10.11949/0438-1157.20220272
• Energy and environmental engineering • Previous Articles Next Articles
Lin WEI1,2(),Jian GUO1,2,Zihao LIAO1,2,3,Dafalla Ahmed Mohmed1,2,Fangming JIANG1,2()
Received:
2022-03-01
Revised:
2022-05-16
Online:
2022-08-01
Published:
2022-07-05
Contact:
Fangming JIANG
魏琳1,2(),郭剑1,2,廖梓豪1,2,3,Dafalla Ahmed Mohmed1,2,蒋方明1,2()
通讯作者:
蒋方明
作者简介:
魏琳(1988—),女,博士,助理研究员,基金资助:
CLC Number:
Lin WEI, Jian GUO, Zihao LIAO, Dafalla Ahmed Mohmed, Fangming JIANG. Influence of air flow rate on the performance of air cooled hydrogen fuel cell stack[J]. CIESC Journal, 2022, 73(7): 3222-3231.
魏琳, 郭剑, 廖梓豪, Dafalla Ahmed Mohmed, 蒋方明. 空气流量对空冷燃料电池电堆性能的影响研究[J]. 化工学报, 2022, 73(7): 3222-3231.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
扩散层/催化层孔隙率ε | 0.6/ 0.5[ |
催化层膜相体积分数εm | 0.2 |
扩散层/催化层渗透率K/m2 | 6.2×10-12/ 6.2×10-13[ |
H2/O2/水蒸气扩散系数D/(m2/s) | 1.1×10-4/ 3.2×10-5/ 4.35×10-5[ |
H2/O2/N2/水蒸气黏度μ/(Pa·s) | 9.88×10-6/ 2.3×10-5/ 2.01×10-5/ 1.12×10-5[ |
双极板/扩散层/催化层电导率σ/(S/m) | 1.4×106/ 300/ 300[ |
双极板/扩散层/催化层/质子交换膜热导率k/(W/(m·K)) | 16/ 1.7/ 0.27/ 0.16[ |
双极板/扩散层/催化层/质子交换膜热质量ρcp /(kJ/(m3·K)) | 4000/ 230/ 580/ 2300[ |
质子交换膜密度ρmem/(kg/m3) | 1980[ |
质子交换膜当量质量EW/(kg/mol) | 1.0[ |
环境温度/℃ | 28 |
H2/空气进口绝对压力/MPa | 0.15/ 0.1 |
Table 1 Physical properties and working conditions
参数 | 数值 |
---|---|
扩散层/催化层孔隙率ε | 0.6/ 0.5[ |
催化层膜相体积分数εm | 0.2 |
扩散层/催化层渗透率K/m2 | 6.2×10-12/ 6.2×10-13[ |
H2/O2/水蒸气扩散系数D/(m2/s) | 1.1×10-4/ 3.2×10-5/ 4.35×10-5[ |
H2/O2/N2/水蒸气黏度μ/(Pa·s) | 9.88×10-6/ 2.3×10-5/ 2.01×10-5/ 1.12×10-5[ |
双极板/扩散层/催化层电导率σ/(S/m) | 1.4×106/ 300/ 300[ |
双极板/扩散层/催化层/质子交换膜热导率k/(W/(m·K)) | 16/ 1.7/ 0.27/ 0.16[ |
双极板/扩散层/催化层/质子交换膜热质量ρcp /(kJ/(m3·K)) | 4000/ 230/ 580/ 2300[ |
质子交换膜密度ρmem/(kg/m3) | 1980[ |
质子交换膜当量质量EW/(kg/mol) | 1.0[ |
环境温度/℃ | 28 |
H2/空气进口绝对压力/MPa | 0.15/ 0.1 |
占空比/% | 风扇功率/W |
---|---|
30 | 13.2 |
50 | 26.4 |
70 | 40.8 |
90 | 57.6 |
Table 2 Fan power at different duty ratio
占空比/% | 风扇功率/W |
---|---|
30 | 13.2 |
50 | 26.4 |
70 | 40.8 |
90 | 57.6 |
1 | Ajanovic A, Haas R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10049-10058. |
2 | 赵思臣, 王奔, 谢玉洪, 等. 无外增湿质子交换膜燃料电池线性温度扫描实验[J]. 中国电机工程学报, 2014, 34(26): 4528-4533. |
Zhao S C, Wang B, Xie Y H, et al. Linear temperature sweep experimental study on proton exchange membrane fuel cell without external humidification[J]. Proceedings of the CSEE, 2014, 34(26): 4528-4533. | |
3 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
4 | 张文静, 李静, 魏子栋. 燃料电池空气电极的孔道结构调控[J]. 化工学报, 2020, 71(10): 4553-4574. |
Zhang W J, Li J, Wei Z D. Strategies for tuning porous structures of air electrode in fuel cells[J]. CIESC Journal, 2020, 71(10):4553-4574. | |
5 | Kurnia J C, Chaedir B A, Sasmito A P, et al. Progress on open cathode proton exchange membrane fuel cell: performance, designs, challenges and future directions[J]. Applied Energy, 2021, 283: 116359. |
6 | 张晓辉, 刘莉, 戴月领. 燃料电池无人机能源管理与飞行状态耦合[J]. 航空学报, 2019, 40(7): 222793. |
Zhang X H, Liu L, Dai Y L. Coupling effect of energy management and flight state for fuel cell powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 222793. | |
7 | Sagar A, Chugh S, Sonkar K, et al. A computational analysis on the operational behaviour of open-cathode polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34125-34138. |
8 | Luo L Z, Huang B, Cheng Z Y, et al. Improved water management by alternating air flow directions in a proton exchange membrane fuel cell stack[J]. Journal of Power Sources, 2020, 466: 228311. |
9 | D'Souza C, Apicella M, El-kharouf A, et al. Thermal characteristics of an air-cooled open-cathode proton exchange membrane fuel cell stack via numerical investigation[J]. International Journal of Energy Research, 2020, 44(14): 11597-11613. |
10 | De las Heras A, Vivas F J, Segura F, et al. Air-cooled fuel cells: keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
11 | Yuan W W, Ou K, Kim Y B. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization[J]. Applied Thermal Engineering, 2020, 167: 114715. |
12 | Hu M, Zhao R, Pan R, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅱ): Parameter sensitivity analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18589-18603. |
13 | Ou K, Wang Y X, Kim Y B. Performance optimization for open-cathode fuel cell systems with overheating protection and air starvation prevention[J]. Fuel Cells, 2017, 17(3): 299-307. |
14 | Al-Anazi A, Wilberforce T, Khatib F N, et al. Performance evaluation of an air breathing polymer electrolyte membrane (PEM) fuel cell in harsh environments — a case study under Saudi Arabia's ambient condition[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23463-23479. |
15 | Dudek M, Lis B, Raźniak A, et al. Selected aspects of designing modular PEMFC stacks as power sources for unmanned aerial vehicles[J]. Applied Sciences, 2021, 11(2): 675. |
16 | Sasmito A P, Kurnia J C, Shamim T, et al. Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method[J]. Applied Energy, 2017, 185: 1225-1232. |
17 | Lee J, Gundu M H, Lee N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11704-11713. |
18 | Zhao C, Xing S, Chen M, et al. Optimal design of cathode flow channel for air-cooled PEMFC with open cathode[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17771-17781. |
19 | Kang D G, Park C, Lim I S, et al. Performance enhancement of air-cooled open cathode polymer electrolyte membrane fuel cell with inserting metal foam in the cathode side[J]. International Journal of Hydrogen Energy, 2020, 45(51): 27622-27631. |
20 | Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
21 | Song K, Fan Z X, Hu X, et al. Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells[J]. Energy, 2021, 223: 120104. |
22 | Zhao C, Xing S, Liu W, et al. Performance improvement for air-cooled open-cathode proton exchange membrane fuel cell with different design parameters of the gas diffusion layer[J]. Progress in Natural Science: Materials International, 2020, 30(6): 825-831. |
23 | Jian Q F, Luo L Z, Huang B, et al. Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode[J]. Applied Thermal Engineering, 2018, 142: 203-214. |
24 | Zhao J, Jian Q F, Huang Z P, et al. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet[J]. Journal of Power Sources, 2019, 435: 226775. |
25 | Zhao J, Jian Q F, Luo L Z, et al. Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2018, 145: 343-351. |
26 | Liao Z H, Wei L, Dafalla A M, et al. Analysis of the impact of flow field arrangement on the performance of PEMFC with zigzag-shaped channels[J]. International Journal of Heat and Mass Transfer, 2021, 181: 121900. |
27 | Wei L, Liao Z H, Suo Z B, et al. Numerical study of cold start performance of proton exchange membrane fuel cell with coolant circulation[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22160-22172. |
28 | Wei L, Liao Z H, Dafalla A M, et al. Performance investigation of proton exchange membrane fuel cell with dean flow channels[J]. Energy Technology, 2022, 10(3): 2100851. |
29 | Mao L, Wang C Y, Tabuchi Y. A multiphase model for cold start of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2007, 154(3): B341-B351. |
30 | Jiao K, Li X G. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2009, 54(27): 6876-6891. |
31 | Luo Y Q, Guo Q, Du Q, et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224: 99-114. |
32 | Um S, Wang C Y. Computational study of water transport in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2006, 156(2): 211-223. |
33 | Haynes W M. CRC Handbook of Chemistry and Physics[M]. 95th ed. Boca Raton: CRC Press, 2014. |
34 | Liao Z H, Wei L, Dafalla A M, et al. Numerical study of subfreezing temperature cold start of proton exchange membrane fuel cells with zigzag-channeled flow field[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120733. |
35 | Denki S. Cooling fan catalog[EB/OL]. 2021[2022-02-16]. . |
36 | Li M, Dai C H, Guo A, et al. Experimental study on dynamic voltage uniformity of a 2-kW air-cooled PEMFC[J]. Electrical Engineering, 2018, 100(4): 2725-2735. |
37 | Zhao R X, Hu M R, Pan R X, et al. Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell (Part Ⅰ): Model development and base case study[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23504-23518. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||