CIESC Journal ›› 2017, Vol. 68 ›› Issue (4): 1423-1433.DOI: 10.11949/j.issn.0438-1157.20161578
Previous Articles Next Articles
ZHANG Hongmei1, LIN Feng1, REN Mingqi1, LI Jinlian1, HAO Yulan1, WU Hongjun1, ZHAO Jingying2, ZHAO Liang3, HE Yongdian4
Received:
2016-11-07
Revised:
2017-01-09
Online:
2017-04-05
Published:
2017-04-05
Supported by:
supported by the National Natural Science Foundation of China(201476046).
张红梅1, 林枫1, 任铭琪1, 李金莲1, 郝玉兰1, 吴红军1, 赵晶莹2, 赵亮3, 贺永殿4
通讯作者:
张红梅
基金资助:
国家自然科学基金项目(21476046);黑龙江省教育厅自然科学基金项目(12541074);中国石油和化学工业联合会科技指导计划项目(2016-13-03);东北石油大学校青年基金项目(2013NQ113)。
CLC Number:
ZHANG Hongmei, LIN Feng, REN Mingqi, LI Jinlian, HAO Yulan, WU Hongjun, ZHAO Jingying, ZHAO Liang, HE Yongdian. Free radical models of small molecular alkane pyrolysis[J]. CIESC Journal, 2017, 68(4): 1423-1433.
张红梅, 林枫, 任铭琪, 李金莲, 郝玉兰, 吴红军, 赵晶莹, 赵亮, 贺永殿. 小分子烃类蒸汽热裂解自由基机理模型研究方法的探讨[J]. 化工学报, 2017, 68(4): 1423-1433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20161578
[1] | RICE F O. The thermal decomposition of organic compounds from the standpoint of free radicals(Ⅳ):The dehydrogenation of paraffin hydrocarbons and the strength of the C-C bond[J]. American Chemical Society, 1933, 55(10):4245-4247. |
[2] | RICE F O. The thermal decomposition of organic compounds from the standpoint of free radicals (Ⅲ):The calculation of the products formed from paraffin hydrocarbons[J]. American Chemical Society, 1933, 55(1):3035-3040. |
[3] | FREDDY E I, ROGER M M. The mechanism and rate parameters for the pyrolysis of n-hexane in the range 723-823 K[J]. International Journal of Chemical Kinetics, 1987, 19(2):81-103. |
[4] | BILLAUD F, ELYAHYAOUI K, BARONNET F. Mechanistic modeling of the pyrolysis of n-hexane[J]. Journal of Analytical & Applied Pyrolysis, 1991, 19:29-40. |
[5] | EBERT K H, EDERER H J, ISBARN G. The thermal decomposition of n-hexane[J]. International Journal of Chemical Kinetics, 1983, 15(5):475-502. |
[6] | SABBE M K, GEEM K M V, REYNIERS M F, et al. First principle-based simulation of ethane steam cracking[J]. AIChE Journal, 2011, 57(2):482-496. |
[7] | WANG K, SALDANA M H, VILLANO S M, et al. Improved kinetic model for ethane pyrolysis at high conversions[C]//ACS National Meeting. Boston, 2015. |
[8] | WANG K, VILLANO S M, DEAN A M. Fundamentally-based kinetic model for propene pyrolysis[J]. Combustion & Flame, 2015, 162(12):4456-4470. |
[9] | 张兆斌, 李华, 张永刚, 等. 丁烷热裂解自由基反应模型的建立和验证[J]. 石油化工, 2007, 36(1):44-48.ZHANG Z B, LI H, ZHANG Y G, et al. Establishment and verification of free radical model for butane steam cracking[J]. Petrochemical Technology, 2007, 36(1):44-48. |
[10] | WANG K, VILLANO S M, DEAN A M. Experimental and kinetic modeling study of butene isomer pyrolysis(Ⅰ):1-and 2-butene[J]. Combustion & Flame, 2016, 173:347-369. |
[11] | WANG K, VILLANO S M, DEAN A M. Experimental and kinetic modeling study of butene isomer pyrolysis(Ⅱ):Isobutene[J]. Combustion & Flame, 2017, 176:23-37. |
[12] | 杜鸟锋, 甯红波, 李泽荣, 等. 1, 3-丁二烯热裂解的动力学计算与模型研究[J]. 物理化学学报, 2016, 32(2):453-464.DU N F, NING H B, LI Z R, et al. Kinetic calculation and modeling study of 1, 3-butadiene pyrolysis[J]. Acta Phys. -Chim. Sin., 2016, 32(2):453-464. |
[13] | 姬伟毅. 正戊烷热裂解自由基反应模型的研究[J]. 石油化工, 2012, 41(6):633-636.JI W Y. Radical reaction model for n-pentane pyrolysis[J]. Petrochemical Technology, 2012, 41(6):633-636. |
[14] | 张红梅, 姜维, 李金莲, 等. 乙烷热裂解自由基反应机理的综合数值模拟[J]. 化工科技, 2014, 22(2):20-23.ZHANG H M, JIANG W, LI J L, et al. Numerical simulation research on free radical reaction mechanism of ethane pyrolysis[J]. Science & Technology in Chemical Industry, 2012, 41(6):633-636. |
[15] | 张红梅, 顾萍萍, 张晗伟, 等. 丙烷热裂解反应机理的分子模拟[J]. 石油学报(石油加工), 2012, 28(6):986-990.ZHANG H M, GU P P, ZHAO H W, et al. Molecular simulation of propane pyrolysis reaction[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2012, 28(6):986-990. |
[16] | 张红梅, 李青月, 李金莲, 等. 乙烷丙烷单独及混合裂解相互作用机理的模拟研究[J]. 化工科技, 2015, 23(1):9-13.ZHANG H M, LI Q Y, LI J L, et al. Numerical simulation on cracking mechanism of interaction of ethane, propane and their mixtures[J]. Science & Technology in Chemical Industry, 2015, 23(1):9-13. |
[17] | 李金莲, 张红梅, 李春秀, 等. 丙烷-正丁烷混合热裂解反应机理及相互作用机理的数值模拟[J]. 计算机与应用化学, 2016, 33(2):213-217.LI J L, ZHANG H M, LI C X, et al. Numerical simulation on reaction mechanism of pyrolysis of propane, n-butane and their mixture[J]. Computers and Applied Chemistry, 2016, 33(2):213-217. |
[18] | 郝玉兰, 张红梅, 张晗伟, 等. 丁烷热裂解反应机理的分子模拟[J]. 石油学报(石油加工), 2013, 29(5):824-829.HAO Y L, ZHANG H M, ZHANG H W, et al. Molecular simulation on pyrolysis mechanism of butane[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(5):824-829. |
[19] | 张红梅, 张晗伟, 顾萍萍, 等. 异丁烷热裂解反应机理的分子模拟[J]. 化工学报, 2012, 63(10):3138-3142.ZHANG H M, ZHANG H W, GU P P, et al. Molecular simulation research on pyrolysis mechanism of isobutane[J]. CIESC Journal, 2012, 63(10):3138-3142. |
[20] | 张红梅, 李春秀, 郝玉兰, 等. C4烷烃混合热裂解反应机理的数值模拟[J]. 化学工程, 2015, 43(5):73-78.ZHANG H M, LI C X, HAO Y L, et al. Numerical simulation on reaction mechanism of mixed pyrolysis of C4 alkanes[J]. Chemical Engineering(China), 2015, 43(5):73-78. |
[21] | 张红梅, 孙维, 李金莲, 等. 正戊烷热裂解一次反应机理的数值模拟[J]. 石油学报(石油加工), 2016, 32(2):394-400.ZHANG H M, SUN W, LI J L, et al. Molecular simulation on pyrolysis mechanism of n-pentane[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(2):394-400. |
[22] | 李青月. 正己烷热裂解一次自由基反应分子模拟及反应机理研究[D]. 大庆:东北石油大学, 2015.LI Q Y. Molecular simulation and reaction mechanism of free radical reactions mechanism of n-hexane thermal cracking[D]. Daqing:Northeast Petroleum University, 2015. |
[23] | 李金莲, 张红梅, 李春秀, 等. 1-丁烯热裂解反应机理的数值模拟[J]. 石油学报(石油加工), 2016, 32(5):1055-1061. LI J L, ZHANG H M, LI C X, et al. Numerical simulation on reaction mechanism of 1-butene pyrolysis[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(5):1055-1061. |
[24] | HIRATO M, YOSHIOKA S. Pyrolysis of naphtha, kerosene, and gas oil by tubular reactor and its simulation model[J]. Sekiyu Gakkaishi, 1972, 15(10):818-824. |
[25] | QUANN R J, JAFFE S B. Building useful models of complex reaction systems in petroleum refining[J]. Chemical Engineering Science, 1996, 51(10):1615-1631. |
[26] | GUILLAUME D, VAKERY E, VERSTRAETE J J, et al. Single event kinetic modelling without explicit generation of large networks:application to hydrocracking of long paraffins[J]. Oil & Gas Science & Technology, 2011, 66(3):399-422. |
[27] | BECKER P J, CELSE B, GUILLAUME D, et al. A continuous lumping model for hydrocracking on a zeolite catalysts:model development and parameter identification[J]. Fuel, 2016, 164:73-82. |
[28] | BLANDING F H. Reaction rates in catalytic cracking of petroleum[J]. Industrial & Engineering Chemistry, 1953, 45(6):1186-1197. |
[29] | WEI J, PRATER C D. The structure and analysis of complex reaction systems[J]. Advances in Catalysis, 1962, 13:203-392. |
[30] | WEEKMAN V W. Optimum operation-regeneration cycles for fixed-bed catalytic cracking[J]. Industrial & Engineering Chemistry Process Design & Development, 1968, 7(2):252-256. |
[31] | 张红梅, 尹云华, 徐春明, 等. 大庆重石脑油蒸汽热裂解集总动力学模型[J]. 化工学报, 2009, 60(11):2743-2748.ZHANG H M, YIN Y H, XU C M, et al. Lumping kinetic model of Daqing naphtha pyrolysis[J]. CIESC Journal, 2009, 60(11):2743-2748. |
[32] | PASHIKANTI K, LIU Y A. Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data(Ⅱ):Fluid catalytic cracking (FCC) process[J]. Energy & Fuels, 2011, 25(11):5320-5344. |
[33] | GAO H, WANG G, LI R, et al. Study on the catalytic cracking of heavy oil by proper cut for higher conversion and desirable products[J]. Energy & Fuels, 2012, 26(3):23275-84. |
[34] | BECKER P J, CELSE B, GUILLAUME D, et al. Hydrotreatment modeling for a variety of VGO feedstocks:a continuous lumping approach[J]. Fuel, 2015, 139(139):133-143. |
[35] | 关国民, 王宗祥. 大庆石脑油裂解炉计算机控制模型[J]. 石油化工, 1990, (8):523-530.GUAN G M, WANG Z X. A computer-controlled model for Daqing naphtha cracking furnace[J]. Petrochemical Technology, 1990, (8):523-530. |
[36] | CAMP C E V, DAMME P S V, WILLEMS P A, et al. Severity in the pyrolysis of petroleum fractions. Fundamentals and industrial application[J]. Ind. Eng. Chem. Process Des. Dev., 1985, 24(3):561-570. |
[37] | 熊国华, 郝红, 王烨, 等. 烃类热裂解的乙烯产率计算[J]. 化学反应工程与工艺, 1996, (2):161-165.XIONG G H, HAO H, WANG Y, et al. The calculation of ethylene yield by the thermal cracking of hydrocarbon[J]. Chemical Reaction Engineering & Technology, 1996, (2):161-165. |
[38] | FRANK D J, SACKETT W M. Kinetic isotope effects in the thermal cracking of neopentane[J]. Geochimica et Cosmochimica Acta, 1969, 33(7):811-820. |
[39] | WANG F, REN J, LI Y. Theoretical study on free radical model for n-hexane pyrolysis[J]. Computers & Applied Chemistry, 2009, 26(10):1243-1248. |
[40] | KEYVANLOO K, SEDIGHI M, TOWFIGHI J. Genetic algorithm model development for prediction of main products in thermal cracking of naphtha:comparison with kinetic modeling[J]. Chemical Engineering Journal, 2012, 209(20):255-262. |
[41] | ABBAS, DREA, NADIA, et al. Mechanism and kinetic of free radical reactions for propane using theoretical calculations[J]. J. Chem. Chem. Eng., 2012, 6(6):563-573. |
[42] | CABALLERO D Y, BIEGLER L T, GUIRARDELLO R. Simulation and optimization of the ethane cracking process to produce ethylene[J]. Computer Aided Chemical Engineering, 2015, 37:917-922. |
[43] | LI D, ZHAO Y. Understanding the chain mechanism of radical reactions in n-hexane pyrolysis[J]. Research on Chemical Intermediates, 2015, 41(6):3507-3529. |
[44] | ZHAO Y, ZHANG S, LI D. Understanding the mechanism of radical reactions in 1-hexene pyrolysis[J]. Chemical Engineering Research & Design, 2014, 92(3):453-460. |
[45] | 吴指南. 基本有机化工工艺学(修订版)[M]. 北京:化学工业出版社, 1990:28-29.WU Z N. Basic Organic Chemical Technology(Revised Edition)[M]. Beijing:Chemical Industry Press, 1990:28-29. |
[46] | DOMANCICH A O, PEREZ V, HOCH P M, et al. Systematic generation of a CAPE-OPEN compliant simulation module from GAMS and FORTRAN models[J]. Chemical Engineering Research & Design, 2010, 88(4):421-429. |
[47] | ZAMOSTNY P, KARABA A, OLAHOVA N, et al. Generalized model of n-heptane pyrolysis and steam cracking kinetics based on automated reaction network generation[J]. Journal of Analytical & Applied Pyrolysis, 2014, 109:159-167. |
[48] | 王国清, 杜志国, 张利军, 等. 应用BP神经网络预测石脑油热裂解产物收率[J]. 石油化工, 2007, 36(7):699-704.WANG G Q, DU Z G, ZHANG L J, et al. Applying BP neural networks to predict product-yields of naphtha steam cracking[J]. Petrochemical Technology, 2007, 36(7):699-704. |
[49] | MAIO F P D, LIGNOLA P G. KING, a kinetic network generator[J]. Chemical Engineering Science, 1992, 47(9/10/11):2713-2718. |
[50] | KARABA A, ZAMOSTNY P, LEDERER J, et al. Generalized model of hydrocarbons pyrolysis using automated reactions network generation[J]. Industrial & Engineering Chemistry Research, 2013, 52(52):15407-15416. |
[51] | ZAMOSTNY P, KARABA A, OLAHOVA N, et al. Generalized model of n-heptane pyrolysis and steam cracking kinetics based on automated reaction network generation[J]. Journal of Analytical & Applied Pyrolysis, 2014, 109:159-167. |
[52] | VAN GEEM K. Single Event Microkinetic Model for Steam Cracking of Hydrocarbons[M]. MARIN G. Ghent:Ghent University, 2006:47-55. |
[53] | VAN G K M, MARIE-FRANCOISE R, MARIN G B, et al. Automatic reaction network generation using RMG for steam cracking of n-hexane[J]. AIChE Journal, 2006, 52(2):718-730. |
[54] | 周丛, 李蔚, 张兆斌, 等. 正戊烷热裂解自由基反应网络自生成模型的研究[J]. 石油化工, 2015, 44(6):669-673.ZHOU C, LI W, ZHANG Z B, et al. Self-generated model for reaction network of pyrolysis of n-pentane[J]. Petrochemical Technology, 2015, 44(6):669-673. |
[55] | 张红梅, 罗殿英, 赵雨波, 等. 典型烃类分子裂解产物分布数值模拟[J]. 化学反应工程与工艺, 2011, 27(6):551-555.ZHANG H M, LUO D Y, ZHAO Y B, et al. Numerical simulation on distribution of products of typical hydrocarbon molecules pyrolysis[J]. Chemical Reaction Engineering & Technology, 2011, 27(6):551-555. |
[56] | 傅献彩, 沈文霞, 姚天扬. 物理化学[M]. 北京:高等教育出版社, 1990:798-812.FU X C, SHEN W X, YAO T Y. Physical Chemistry[M]. Beijing:Higher Education Press, 1990:798-812. |
[57] | EYRING H. The activated complex and the absolute rate of chemical reactions[J]. Chemical Review, 1935, (1):65-77. |
[58] | ARIBIKE D S, SUSU A A. Mechanistic modeling of the pyrolysis of n-heptane[J]. Thermochimica Acta, 1988, 127(1):259-273. |
[59] | 胡益锋. 石脑油裂解炉建模技术研究[D]. 北京:清华大学, 2005.HU Y F. Study on modeling of naphtha pyrolysis furnace[D]. Beijing:Tsinghua University, 2005. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[3] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[4] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[5] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[6] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[7] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[8] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[9] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||