CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3888-3902.DOI: 10.11949/0438-1157.20230689
• Energy and environmental engineering • Previous Articles Next Articles
Zhewen CHEN(), Junjie WEI, Yuming ZHANG()
Received:
2023-07-05
Revised:
2023-09-05
Online:
2023-11-20
Published:
2023-09-25
Contact:
Yuming ZHANG
通讯作者:
张玉明
作者简介:
陈哲文(1990—),男,博士,讲师,2022880013@cup.edu.cn
基金资助:
CLC Number:
Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC[J]. CIESC Journal, 2023, 74(9): 3888-3902.
陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902.
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
气化压力/bar | 250 | 超临界透平等熵效率/% | 90 |
气化温度/℃ | 660 | 燃气透平等熵效率/% | 89 |
锅炉夹点温度/℃ | 10 | 透平1等熵效率/% | 93 |
换热器及省煤器夹点温度/℃ | 10 | 压气机等熵效率/% | 88 |
锅炉内过量空气系数 | 1.3 | 重整/变换反应压力/bar | 15 |
水泵效率/% | 80 | 燃气透平压比 | 15 |
SOFC工作压力/bar | 15 |
Table 1 The key parameters and values
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
气化压力/bar | 250 | 超临界透平等熵效率/% | 90 |
气化温度/℃ | 660 | 燃气透平等熵效率/% | 89 |
锅炉夹点温度/℃ | 10 | 透平1等熵效率/% | 93 |
换热器及省煤器夹点温度/℃ | 10 | 压气机等熵效率/% | 88 |
锅炉内过量空气系数 | 1.3 | 重整/变换反应压力/bar | 15 |
水泵效率/% | 80 | 燃气透平压比 | 15 |
SOFC工作压力/bar | 15 |
煤 | 工业分析/%(mass, ar) | 元素分析/%(mass, ar) | 低位热值/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | ||
气化煤 | 2.79 | 6.84 | 33.19 | 57.18 | 74.29 | 4.69 | 9.26 | 1.00 | 1.12 | 25.40 |
燃料煤 | 8.84 | 9.98 | 49.52 | 31.66 | 68.55 | 3.96 | 6.85 | 0.74 | 1.08 | 26.71 |
Table 2 The proximate and ultimate analysis and the lower heating value of the gasified and fuel coal
煤 | 工业分析/%(mass, ar) | 元素分析/%(mass, ar) | 低位热值/ (MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
水分 | 灰分 | 挥发分 | 固定碳 | 碳 | 氢 | 氧 | 氮 | 硫 | ||
气化煤 | 2.79 | 6.84 | 33.19 | 57.18 | 74.29 | 4.69 | 9.26 | 1.00 | 1.12 | 25.40 |
燃料煤 | 8.84 | 9.98 | 49.52 | 31.66 | 68.55 | 3.96 | 6.85 | 0.74 | 1.08 | 26.71 |
参数 | 取值 |
---|---|
阳极厚度δan /m | 0.0001 |
阴极厚度δcat/m | 0.0022 |
电解质厚度δel/m | 0.00004 |
互连厚度δint/m | 0.000085 |
阳极电阻率ρan/(Ω·m) | |
阴极电阻率ρcat/(Ω·m) | |
电解液电阻率ρel /(Ω·m) | |
互连电阻率ρint/(Ω·m) |
Table 3 The relative parameters for calculating ohmic polarization
参数 | 取值 |
---|---|
阳极厚度δan /m | 0.0001 |
阴极厚度δcat/m | 0.0022 |
电解质厚度δel/m | 0.00004 |
互连厚度δint/m | 0.000085 |
阳极电阻率ρan/(Ω·m) | |
阴极电阻率ρcat/(Ω·m) | |
电解液电阻率ρel /(Ω·m) | |
互连电阻率ρint/(Ω·m) |
单元 | 能量平衡 | 㶲平衡 |
---|---|---|
超临界透平 | ||
燃烧室 | ||
压气机 | ||
燃气透平 | ||
换热器1 | ||
锅炉 | ||
换热器2 | ||
换热器3 | ||
省煤器1 | ||
省煤器2 | ||
重整反应 | ||
变换反应 | ||
SOFC |
Table 4 The energy and exergy balances of different units in the power system
单元 | 能量平衡 | 㶲平衡 |
---|---|---|
超临界透平 | ||
燃烧室 | ||
压气机 | ||
燃气透平 | ||
换热器1 | ||
锅炉 | ||
换热器2 | ||
换热器3 | ||
省煤器1 | ||
省煤器2 | ||
重整反应 | ||
变换反应 | ||
SOFC |
参数 | 文献[ | SOFC模型 |
---|---|---|
发电量误差 | 0.82% | |
输出电压/V | 0.625 | 0.629 |
电池工作温度/K | 1173.15 | 1173.15 |
电流密度/( | 4000 | 4065 |
SOFC发电量/kW | 465.63 | 469.43 |
Table 5 The verification of the SOFC program
参数 | 文献[ | SOFC模型 |
---|---|---|
发电量误差 | 0.82% | |
输出电压/V | 0.625 | 0.629 |
电池工作温度/K | 1173.15 | 1173.15 |
电流密度/( | 4000 | 4065 |
SOFC发电量/kW | 465.63 | 469.43 |
物流 | 温度/℃ | 压力/bar | 摩尔流量/(kmol/s) |
---|---|---|---|
1 | 660.0 | 250 | 0.484 |
2 | 92.0 | 1 | 0.484 |
3 | 25.0 | 1 | 0.112 |
4 | 25.0 | 1 | 0.372 |
5 | 26.9 | 250 | 0.436 |
6 | 960.0 | 1 | 0.112 |
7 | 750.0 | 15 | 0.186 |
8 | 90.0 | 15 | 0.186 |
9 | 220.0 | 15 | 0.226 |
10 | 640.0 | 15 | 0.226 |
11 | 979.4 | 15 | 0.226 |
12 | 538.5 | 15 | 0.226 |
13 | 25.0 | 1 | 0.420 |
14 | 407.8 | 15 | 0.420 |
15 | 640.0 | 15 | 0.420 |
16 | 979.4 | 15 | 0.365 |
17 | 724.4 | 15 | 0.365 |
18 | 429.1 | 15 | 0.365 |
19 | 163.0 | 15 | 0.365 |
20 | 161.8 | 15 | 0.187 |
21 | 25.0 | 1 | 0.178 |
22 | 152.3 | 250 | 0.436 |
23 | 229.3 | 250 | 0.436 |
24 | 901.0 | 15 | 0.402 |
25 | 475.8 | 1 | 0.402 |
26 | 120.0 | 1 | 0.402 |
27 | 120.0 | 1 | 0.452 |
28 | 650.0 | 15 | 0.035 |
29 | 454.4 | 15 | 0.04 |
30 | 25.0 | 1 | 1.000 |
31 | 25.0 | 1 | 1.123 |
Table 6 The parameters of key points in the power system
物流 | 温度/℃ | 压力/bar | 摩尔流量/(kmol/s) |
---|---|---|---|
1 | 660.0 | 250 | 0.484 |
2 | 92.0 | 1 | 0.484 |
3 | 25.0 | 1 | 0.112 |
4 | 25.0 | 1 | 0.372 |
5 | 26.9 | 250 | 0.436 |
6 | 960.0 | 1 | 0.112 |
7 | 750.0 | 15 | 0.186 |
8 | 90.0 | 15 | 0.186 |
9 | 220.0 | 15 | 0.226 |
10 | 640.0 | 15 | 0.226 |
11 | 979.4 | 15 | 0.226 |
12 | 538.5 | 15 | 0.226 |
13 | 25.0 | 1 | 0.420 |
14 | 407.8 | 15 | 0.420 |
15 | 640.0 | 15 | 0.420 |
16 | 979.4 | 15 | 0.365 |
17 | 724.4 | 15 | 0.365 |
18 | 429.1 | 15 | 0.365 |
19 | 163.0 | 15 | 0.365 |
20 | 161.8 | 15 | 0.187 |
21 | 25.0 | 1 | 0.178 |
22 | 152.3 | 250 | 0.436 |
23 | 229.3 | 250 | 0.436 |
24 | 901.0 | 15 | 0.402 |
25 | 475.8 | 1 | 0.402 |
26 | 120.0 | 1 | 0.402 |
27 | 120.0 | 1 | 0.452 |
28 | 650.0 | 15 | 0.035 |
29 | 454.4 | 15 | 0.04 |
30 | 25.0 | 1 | 1.000 |
31 | 25.0 | 1 | 1.123 |
参数 | 数值 |
---|---|
Nernst 电压/V | 1.026 |
欧姆活化损失/V | 0.093 |
活化极化损失/V | 0.134 |
浓差极化损失/V | 0.035 |
SOFC工作电压/V | 0.764 |
SOFC工作电流/A | 2.114×107 |
SOFC电堆功率/kW | 16149.74 |
系统净发电量/kW | 29917.45 |
系统发电效率/% | 54.01 |
Table 7 The calculation results of the system
参数 | 数值 |
---|---|
Nernst 电压/V | 1.026 |
欧姆活化损失/V | 0.093 |
活化极化损失/V | 0.134 |
浓差极化损失/V | 0.035 |
SOFC工作电压/V | 0.764 |
SOFC工作电流/A | 2.114×107 |
SOFC电堆功率/kW | 16149.74 |
系统净发电量/kW | 29917.45 |
系统发电效率/% | 54.01 |
项目 | 本文 新系统 | 占比/% | 文献[ | 占比/% |
---|---|---|---|---|
能量输入/kW | ||||
气化煤 | 25400.00 | 45.85 | 30275.76 | 54.65 |
燃料煤 | 29995.33 | 54.15 | 25119.57 | 45.35 |
总计 | 55395.33 | 100.00 | 55395.33 | 100.00 |
能量输出/kW | ||||
气化室未反应碳 | 1455.16 | 2.63 | 1734.49 | 3.13 |
超临界透平输出功 | 10492.00 | 18.94 | 12506.04 | 22.58 |
冷凝器 | 15849.35 | 28.61 | 19518.07 | 35.23 |
燃气透平输出功 | 7205.78 | 13.01 | 27980.64 | 50.51 |
SOFC发电量 | 16149.74 | 29.15 | — | — |
压气机和泵耗功 | -5064.15 | -9.14 | -13307.43 | -24.02 |
SOFC阴极空气透平输出功 | 1134.07 | 2.05 | — | — |
燃气轮机排烟 | 6832.50 | 12.33 | 5840.60 | 10.54 |
余热锅炉排烟及灰尘 | 1340.88 | 2.42 | 1122.92 | 2.03 |
总计 | 55395.33 | 100.00 | 55395.33 | 100.00 |
发电效率/% | 54.01 | 49.06 |
Table 8 The energy balances of the power systems
项目 | 本文 新系统 | 占比/% | 文献[ | 占比/% |
---|---|---|---|---|
能量输入/kW | ||||
气化煤 | 25400.00 | 45.85 | 30275.76 | 54.65 |
燃料煤 | 29995.33 | 54.15 | 25119.57 | 45.35 |
总计 | 55395.33 | 100.00 | 55395.33 | 100.00 |
能量输出/kW | ||||
气化室未反应碳 | 1455.16 | 2.63 | 1734.49 | 3.13 |
超临界透平输出功 | 10492.00 | 18.94 | 12506.04 | 22.58 |
冷凝器 | 15849.35 | 28.61 | 19518.07 | 35.23 |
燃气透平输出功 | 7205.78 | 13.01 | 27980.64 | 50.51 |
SOFC发电量 | 16149.74 | 29.15 | — | — |
压气机和泵耗功 | -5064.15 | -9.14 | -13307.43 | -24.02 |
SOFC阴极空气透平输出功 | 1134.07 | 2.05 | — | — |
燃气轮机排烟 | 6832.50 | 12.33 | 5840.60 | 10.54 |
余热锅炉排烟及灰尘 | 1340.88 | 2.42 | 1122.92 | 2.03 |
总计 | 55395.33 | 100.00 | 55395.33 | 100.00 |
发电效率/% | 54.01 | 49.06 |
项目 | 本文新系统 | 占比/% | 文献[ | 占比/% |
---|---|---|---|---|
㶲输入/kW | ||||
气化煤 | 26015.83 | 45.91 | 31003.27 | 54.71 |
燃料煤 | 30649.04 | 54.09 | 25661.60 | 45.29 |
总计 | 56664.87 | 100.00 | 56664.87 | 100.00 |
㶲输出/kW | ||||
气化室未反应碳 | 1415.26 | 2.50 | 1686.58 | 2.98 |
净输出功 | 29917.44 | 52.80 | 27173.52 | 47.95 |
冷却器 | 2523.90 | 4.45 | 2924.31 | 5.16 |
锅炉排烟 | 186.39 | 0.33 | 156.05 | 0.28 |
燃气轮机排烟 | 984.90 | 1.74 | 664.58 | 1.17 |
㶲损失/kW | ||||
气化室和锅炉 | 11485.31 | 20.27 | 8396.31 | 14.82 |
超临界透平 | 964.28 | 1.70 | 1149.14 | 2.03 |
燃气透平 | 383.98 | 0.68 | 1175.67 | 2.07 |
燃烧室 | 2788.18 | 4.92 | 9857.33 | 17.40 |
压气机 | 261.74 | 0.46 | 719.55 | 1.27 |
换热器 | — | — | 2761.83 | 4.87 |
换热器1 | 342.10 | 0.60 | — | — |
换热器2 | 637.12 | 1.12 | — | — |
换热器3 | 277.10 | 0.49 | — | — |
换热器4 | 893.21 | 1.58 | — | — |
省煤器1 | 1247.00 | 2.20 | — | — |
省煤器2 | 327.87 | 0.58 | — | — |
重整反应器 | 409.34 | 0.72 | — | — |
变换反应器 | 194.10 | 0.34 | — | — |
SOFC | 1305.43 | 2.30 | — | — |
SOFC阴极空气透平 | 120.22 | 0.21 | — | — |
总计 | 56664.87 | 100.00 | 56664.87 | 100.00 |
㶲效率/% | 52.79 | 47.95 |
Table 9 The exergy balances of the power systems
项目 | 本文新系统 | 占比/% | 文献[ | 占比/% |
---|---|---|---|---|
㶲输入/kW | ||||
气化煤 | 26015.83 | 45.91 | 31003.27 | 54.71 |
燃料煤 | 30649.04 | 54.09 | 25661.60 | 45.29 |
总计 | 56664.87 | 100.00 | 56664.87 | 100.00 |
㶲输出/kW | ||||
气化室未反应碳 | 1415.26 | 2.50 | 1686.58 | 2.98 |
净输出功 | 29917.44 | 52.80 | 27173.52 | 47.95 |
冷却器 | 2523.90 | 4.45 | 2924.31 | 5.16 |
锅炉排烟 | 186.39 | 0.33 | 156.05 | 0.28 |
燃气轮机排烟 | 984.90 | 1.74 | 664.58 | 1.17 |
㶲损失/kW | ||||
气化室和锅炉 | 11485.31 | 20.27 | 8396.31 | 14.82 |
超临界透平 | 964.28 | 1.70 | 1149.14 | 2.03 |
燃气透平 | 383.98 | 0.68 | 1175.67 | 2.07 |
燃烧室 | 2788.18 | 4.92 | 9857.33 | 17.40 |
压气机 | 261.74 | 0.46 | 719.55 | 1.27 |
换热器 | — | — | 2761.83 | 4.87 |
换热器1 | 342.10 | 0.60 | — | — |
换热器2 | 637.12 | 1.12 | — | — |
换热器3 | 277.10 | 0.49 | — | — |
换热器4 | 893.21 | 1.58 | — | — |
省煤器1 | 1247.00 | 2.20 | — | — |
省煤器2 | 327.87 | 0.58 | — | — |
重整反应器 | 409.34 | 0.72 | — | — |
变换反应器 | 194.10 | 0.34 | — | — |
SOFC | 1305.43 | 2.30 | — | — |
SOFC阴极空气透平 | 120.22 | 0.21 | — | — |
总计 | 56664.87 | 100.00 | 56664.87 | 100.00 |
㶲效率/% | 52.79 | 47.95 |
参数 | 本文新系统 | 传统燃煤电站 | S-CO2燃煤电站 | |||||
---|---|---|---|---|---|---|---|---|
文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | ||
最高温度/°C | 660 | 600 | 597 | 545 | 600 | 620 | 620 | 620 |
最高压力/bar | 250 | 300 | 240 | 260 | 253.4 | 300 | 300 | 300 |
发电效率/% | 54.01 | 41.00 | 45.00 | 43.00 | 43.19 | 47.80 | 48.37 | 47.99 |
Table 10 Comparison between the proposed system and coal-fired supercritical power plants
参数 | 本文新系统 | 传统燃煤电站 | S-CO2燃煤电站 | |||||
---|---|---|---|---|---|---|---|---|
文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | ||
最高温度/°C | 660 | 600 | 597 | 545 | 600 | 620 | 620 | 620 |
最高压力/bar | 250 | 300 | 240 | 260 | 253.4 | 300 | 300 | 300 |
发电效率/% | 54.01 | 41.00 | 45.00 | 43.00 | 43.19 | 47.80 | 48.37 | 47.99 |
参数 | 本文新系统 | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ |
---|---|---|---|---|---|---|---|
最高温度/°C | 660 | 660 | 650 | 660 | 660 | 660 | 560 |
最高压力/bar | 250 | 250 | 300 | 250 | 250 | 250 | 250 |
发电效率/% | 54.01 | 42.18 | 41.17 | 38.31 | 46.60 | 49.06 | 27.9 |
Table 11 Comparison between the proposed system and power system based on SCWG of coal
参数 | 本文新系统 | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ | 文献[ |
---|---|---|---|---|---|---|---|
最高温度/°C | 660 | 660 | 650 | 660 | 660 | 660 | 560 |
最高压力/bar | 250 | 250 | 300 | 250 | 250 | 250 | 250 |
发电效率/% | 54.01 | 42.18 | 41.17 | 38.31 | 46.60 | 49.06 | 27.9 |
1 | 中国电力企业联合会. 中国电力行业年度发展报告2023[R]. 2023. |
China Electric Power Enterprises Federation. Annual development report of China’s power industry 2023[R]. 2023. | |
2 | 帅永, 赵斌, 蒋东方, 等. 中国燃煤高效清洁发电技术现状与展望[J]. 热力发电, 2022, 51(1): 1-10. |
Shuai Y, Zhao B, Jiang D F, et al. Status and prospect of coal-fired high efficiency and clean power generation technology in China[J]. Thermal Power Generation, 2022, 51(1): 1-10. | |
3 | Mu R Q, Liu M, Yan J J. Advanced exergy analysis on supercritical water gasification of coal compared with conventional O2-H2O and chemical looping coal gasification[J]. Fuel Processing Technology, 2023, 245: 107742. |
4 | Chen W Y, Xu R N. Clean coal technology development in China[J]. Energy Policy, 2010, 38(5): 2123-2130. |
5 | Xue X D, Liu C C, Han W, et al. Proposal and investigation of a high-efficiency coal-fired power generation system enabled by chemical recuperative supercritical water coal gasification[J]. Energy, 2023, 267: 126598. |
6 | Krüger M. Process development for integrated coal gasification solid oxide fuel cells hybrid power plants—investigations on solid oxide fuel cells/gas turbine hybrid power plants run on clean coal gas[J]. Applied Energy, 2019, 250: 19-31. |
7 | Wu W, Zheng L, Shi B, et al. Energy and exergy analysis of MSW-based IGCC power/polygeneration systems[J]. Energy Conversion and Management, 2021, 238: 114119. |
8 | 王哮江, 刘鹏, 李荣春, 等. “双碳”目标下先进发电技术研究进展及展望[J]. 热力发电, 2022, 51(1): 52-59. |
Wang X J, Liu P, Li R C, et al. Research progress and prospects of advanced power generation technology under the goal of carbon emission peak and carbon neutrality[J]. Thermal Power Generation, 2022, 51(1): 52-59. | |
9 | 郭烈锦, 赵亮, 吕友军, 等. 煤炭超临界水气化制氢发电多联产技术[J]. 工程热物理学报, 2017, 38(3): 678-679. |
Guo L J, Zhao L, Lyu Y J, et al. Multi-generation technology of hydrogen production and power generation by coal supercritical water gasification[J]. Journal of Engineering Thermophysics, 2017, 38(3): 678-679. | |
10 | Chen Z W, Zhang X S, Gao L, et al. Thermal analysis of supercritical water gasification of coal for power generation with partial heat recovery[J]. Applied Thermal Engineering, 2017, 111: 1287-1295. |
11 | 闫秋会, 苗海军, 张莉, 等. 超临界水中煤气化制氢热力发电系统的构建及其能量转化机理分析[J]. 煤炭技术, 2014, 33(8): 221-223. |
Yan Q H, Miao H J, Zhang L, et al. Novel power generation system based on coal gasification in supercritical water and principle of its energy conversion[J]. Coal Technology, 2014, 33(8): 221-223. | |
12 | Ge Z W, Jin H, Guo L J. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: explore the way to complete gasification of coal[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19583-19592. |
13 | Li Y L, Guo L J, Zhang X M, et al. Hydrogen production from coal gasification in supercritical water with a continuous flowing system[J]. International Journal of Hydrogen Energy, 2010, 35(7): 3036-3045. |
14 | Jin H, Lu Y J, Liao B, et al. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7151-7160. |
15 | Yan Q H, Guo L J, Lu Y J. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water[J]. Energy Conversion and Management, 2006, 47(11/12): 1515-1528. |
16 | Vostrikov A A, Psarov S A, Dubov D Y, et al. Kinetics of coal conversion in supercritical water[J]. Energy & Fuels, 2007, 21(5): 2840-2845. |
17 | Guo S M, Guo L J, Yin J R, et al. Supercritical water gasification of glycerol: intermediates and kinetics[J]. The Journal of Supercritical Fluids, 2013, 78: 95-102. |
18 | Azadi P, Farnood R, Vuillardot C. Estimation of heating time in tubular supercritical water reactors[J]. The Journal of Supercritical Fluids, 2011, 55(3): 1038-1045. |
19 | Jin H, Guo S M, Guo L J, et al. A mathematical model and numerical investigation for glycerol gasification in supercritical water with a tubular reactor[J]. The Journal of Supercritical Fluids, 2016, 107: 526-533. |
20 | Chen J W, Wang Q T, Xu Z Y, et al. Process in supercritical water gasification of coal: a review of fundamentals, mechanisms, catalysts and element transformation[J]. Energy Conversion and Management, 2021, 237: 114122. |
21 | Bermejo M D, Cocero M J, Fernández-Polanco F. A process for generating power from the oxidation of coal in supercritical water[J]. Fuel, 2004, 83(2): 195-204. |
22 | Yan Q H, Hou Y W, Luo J R, et al. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology[J]. Energy Conversion and Management, 2016, 129: 122-130. |
23 | Briola S, Gabbrielli R, Schiavetti M, et al. Supercritical water oxidation of coal in power plants with low CO2 emissions[C]//ECOS 2007. Padova, Italy, 2007. |
24 | Guo L J, Jin H. Boiling coal in water: hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12953-12967. |
25 | Chen Z W, Zhang X S, Han W, et al. A power generation system with integrated supercritical water gasification of coal and CO2 capture[J]. Energy, 2018, 142: 723-730. |
26 | Chen Z W, Zhang X S, Li S, et al. Novel power generation models integrated supercritical water gasification of coal and parallel partial chemical heat recovery[J]. Energy, 2017, 134: 933-942. |
27 | Ud Din Z, Zainal Z A. Biomass integrated gasification-SOFC systems: technology overview[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1356-1376. |
28 | Zhang H C, Kong W, Dong F F, et al. Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells[J]. Energy Conversion and Management, 2017, 148: 1382-1390. |
29 | Wu Z, Zhu P F, Yao J, et al. Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: energy, exergy, exergoeconomic, environmental (4E) evaluations[J]. Applied Energy, 2020, 279: 115794. |
30 | Perna A, Minutillo M, Jannelli E, et al. Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier[J]. Applied Energy, 2018, 227: 80-91. |
31 | Roy D, Ghosh S. Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle[J]. Clean Technologies and Environmental Policy, 2017, 19(6): 1693-1709. |
32 | El-Emam R S, Dincer I, Naterer G F. Energy and exergy analyses of an integrated SOFC and coal gasification system[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1689-1697. |
33 | Romano M C, Spallina V, Campanari S. Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal[J]. Energy Procedia, 2011, 4: 1168-1175. |
34 | Li C X, Yun L L, Zhang Y, et al. Microstructure, performance and stability of Ni/Al2O3 cermet-supported SOFC operating with coal-based syngas produced using supercritical water[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13001-13006. |
35 | Li C X, Li C J, Guo L J. Performance of a Ni/Al2O3 cermet-supported tubular solid oxide fuel cell operating with biomass-based syngas through supercritical water[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2904-2908. |
36 | Aloui T, Halouani K. Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel[J]. Applied Thermal Engineering, 2007, 27(4): 731-737. |
37 | Guo L J, Jin H, Ge Z W, et al. Industrialization prospects for hydrogen production by coal gasification in supercritical water and novel thermodynamic cycle power generation system with no pollution emission[J]. Science China Technological Sciences, 2015, 58(12): 1989-2002. |
38 | Guo L J, Jin H, Lu Y J. Supercritical water gasification research and development in China[J]. The Journal of Supercritical Fluids, 2015, 96: 144-150. |
39 | 金辉, 吕友军, 赵亮, 等. 煤炭超临界水气化制氢发电多联产技术进展[J]. 中国基础科学, 2018, 20(4): 4-9, 16. |
Jin H, Lyu Y J, Zhao L, et al. Development in the plolygeneration-technology based on steaming coal with supercritical water gasification[J]. China Basic Science, 2018, 20(4): 4-9, 16. | |
40 | Lanzini A, Leone P, Guerra C, et al. Durability of anode supported solid oxides fuel cells (SOFC) under direct dry-reforming of methane[J]. Chemical Engineering Journal, 2013, 220: 254-263. |
41 | Aguiar P, Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell (Ⅰ): Model-based steady-state performance[J]. Journal of Power Sources, 2004, 138(1/2): 120-136. |
42 | Alzate-Restrepo V, Hill J M. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane[J]. Applied Catalysis A: General, 2008, 342(1/2): 49-55. |
43 | Koo T, Kim Y S, Lee D, et al. System simulation and exergetic analysis of solid oxide fuel cell power generation system with cascade configuration[J]. Energy, 2021, 214: 119087. |
44 | 史翊翔. 固体氧化物燃料电池反应机理及模型研究[D]. 北京: 清华大学, 2010. |
Shi Y X. The reaction mechanism and model study on the solid oxide fuel cell[D]. Beijing: Tsinghua University, 2010. | |
45 | Zhang X S, Chen Z W, Chen Z B, et al. Exergy analysis of a novel chemical looping hydrogen generation system integrated with SOFC[J]. Journal of Thermal Science, 2021, 30(1): 313-323. |
46 | 罗丽琦, 王绍荣. 以气化煤气为燃料的固体氧化物燃料电池热电联供系统设计[J]. 洁净煤技术, 2023(29): 1-15. |
Luo L Q, Wang S R. Design of combined heat and power supply system based on coal gas SOFC (IGFC-CHP) system[J]. Clean Coal Technology, 2023(29): 1-15. | |
47 | Chen Z W, Zhou Q, Zhang Y M, et al. Energy, exergy and economic (3E) evaluations of a novel power generation system combining supercritical water gasification of coal with chemical heat recovery[J]. Energy Conversion and Management, 2023, 276: 116531. |
48 | Breeze P. Coal-fired power plants[M]//Power Generation Technologies. Amsterdam: Elsevier, 2014: 29-65. |
49 | Zhang D K. Introduction to advanced and ultra-supercritical fossil fuel power plants[M]//Ultra-Supercritical Coal Power Plants. UK: Woodhead Publishing, 2013: 1-20. |
50 | Hentschel J, Zindler H, Spliethoff H. Modelling and transient simulation of a supercritical coal-fired power plant: dynamic response to extended secondary control power output[J]. Energy, 2017, 137: 927-940. |
51 | Sanpasertparnich T, Aroonwilas A. Simulation and optimization of coal-fired power plants[J]. Energy Procedia, 2009, 1(1): 3851-3858. |
52 | Mecheri M, Le Moullec Y. Supercritical CO2 Brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771. |
53 | Xu J L, Sun E H, Li M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246. |
54 | Sun E H, Xu J L, Hu H, et al. Overlap energy utilization reaches maximum efficiency for S-CO2 coal fired power plant: a new principle[J]. Energy Conversion and Management, 2019, 195: 99-113. |
55 | Donatini F, Gigliucci G, Riccardi J, et al. Supercritical water oxidation of coal in power plants with low CO2 emissions[J]. Energy, 2009, 34(12): 2144-2150. |
[1] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[8] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[9] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[10] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[11] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[12] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[13] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[14] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[15] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 529
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||