CIESC Journal ›› 2017, Vol. 68 ›› Issue (11): 4112-4120.DOI: 10.11949/j.issn.0438-1157.20170364
Previous Articles Next Articles
ZHU Xiao, SHEN Laihong
Received:
2017-04-10
Revised:
2017-06-30
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Natural Science Foundation of China(51561125001).
朱晓, 沈来宏
通讯作者:
沈来宏
基金资助:
国家自然科学基金项目(51561125001)。
CLC Number:
ZHU Xiao, SHEN Laihong. Characteristics on gushing in tower bubbling fluidized bed[J]. CIESC Journal, 2017, 68(11): 4112-4120.
朱晓, 沈来宏. 塔式鼓泡流化床内的涌渗流动特性[J]. 化工学报, 2017, 68(11): 4112-4120.
[1] | GRACE J R. High-velocity fluidized bed reactors[J]. Chemical Engineering Science, 1990, 45(8):1953-1966. |
[2] | KUNⅡ D, LEVENSPIEL O. Circulating fluidized bed reactors[J]. Chemical Engineering Science, 1997, 52(15):2471-2482. |
[3] | MARKSTROM P, LYNFELT A. Designing and operating cold-flow model of a 100kW chemical-looping combustor[J]. Powder Technology, 2012, 222(5):182-192. |
[4] | 薛军鹏, 范海宏, 徐德龙. 大颗粒鼓泡流化床压力脉动信号的小波分析[J]. 化工装备技术, 2006, 27(2):23-27. XUE J P, FAN H H, XU D L. Research on pressure fluctuation signal in coarse bubbling bed based on wavelet analysis[J]. Chemical Equipment Technology, 2006, 27(2):23-27. |
[5] | KAGE H, AGARI M, LIU G, et al. Frequency analysis of pressure fluctuation in fluidized bed plenum find its confidence limit for detection of various modes of fluidization[J]. Advanced Powder Technology, 2000, 11(4):459-475. |
[6] | WANG H, LU S, LIU G, et al. Modeling of cluster structure-dependent drag with Eulerian approach for circulating fluidized beds[J]. Powder Technology, 2011, 208(1):98-110. |
[7] | 刘燕, 张少峰, 王琦. 大颗粒循环流化床压力波动信号分析[J]. 化学反应工程与工艺, 2007, 23(4):302-308. LIU Y, ZHANG S F, WANG Q. Analysis on pressure fluctuation signal in coarse circulating fluidized bed[J]. Chemical Reaction Engineering and Technology, 2007, 23(4):302-308. |
[8] | YANG T Y, LEU L P. Study of transition velocities from bubbling to turbulent fluidization by statistic and wavelet multi-resolution analysis on absolute pressure fluctuations[J]. Chemical Engineering Science, 2008, 63(7):1950-1970. |
[9] | OMMEN J R, SASIC S, SCHAAF J, et al. Time-series analysis of pressure fluctuations in gas-solid fluidized beds-a review[J]. International Journal of Multiphase Flow, 2011, 37(5):403-428. |
[10] | BI H T. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized bed[J]. Chemical Engineering Science, 2007, 62(13):3473-3493. |
[11] | YANG T Y, LEU L P, Multi-resolution analysis of wavelet transform on pressure fluctuations in an L-valve[J]. International Journal of Multiphase Flow, 2008, 34(6):567-579. |
[12] | SCHAAF J, SCHOUTEN J C, JOHNSSON F, et al. Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series[J]. International Journal of Multiphase Flow, 2002, 28(5):865-880. |
[13] | 骞伟中, 魏飞, 王壶, 等. 多段流化床技术用于多相催化与纳米材料合成过程[J]. 化工学报, 2010, 61(9):2186-2191. QIAN W Z, WEI F, WANG H, et al. Application of multistage fluidized bed in heterogeneous catalysis and nano-material synthesis[J]. CIESC Journal, 2010, 61(9):2186-2191. |
[14] | DIANA C G, TOBIAS P, HERMANN H, et al. Influence of ring-type internals on the solids residence time distribution in the fuel reactor of a dual circulating fluidized bed system for chemical looping combustion[J]. Chemical Engineering Research and Design, 2014, 92:1107-1118. |
[15] | DUTTA S, SUCIU G D. An experimental study of the effectiveness of baffles and internals in breaking bubbles in fluid beds[J]. Journal of Chemical Engineering of Japan, 1992, 25(3):345-348. |
[16] | GENG C, ZHONG W, SHAO Y, et al. Computational study of solid circulation in chemical-looping combustion reactor model[J]. Powder Technology, 2015, 276:144-155. |
[17] | YANG T H, SHI W H, LI S, et al. State of the art and trends of water inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society, 2016, 41(7):1598-1609. |
[18] | 李晓光. 煅烧水泥熟料用大颗粒流化床的动力学特性研究[D]. 西安:西安建筑科技大学, 2006. LI X G. Investigation on hydrodynamic properties of the fluidized bed with coarse granules for firing cement[D]. Xi'an:Xi'an University of Architecture and Technology, 2006. |
[19] | YANG T Y, LEU L P. Multi-resolution analysis of wavelet transform on pressure fluctuations in an L-valve[J]. International Journal of Multiphase Flow, 2008, 34(6):567-579. |
[20] | 姜华伟. 基于风帽压力波动的流化床气固流态化特征研究[D]. 北京:华北电力大学, 2013. JIANG H W. Research on gas-solid fluidization characteristics of fluidized beds based on pressure fluctuations in wind caps[D]. Beijing:North China Electric Power University, 2013. |
[21] | SVENSSON A, JOHNSSON F, LECKNER B. Fluidization regimes in non-slugging fluidized beds:the influence of pressure drop across the air distributor[J]. Powder Technology, 1996, 86(3):299-312. |
[22] | SHEN L H, JOHNSSON F, LECKNER B. Digital image analysis of hydrodynamics two-demensional bubbling fluidized beds[J]. Chemical Engineering Science, 2004, 59(13):2607-2617. |
[23] | CAICEDO G R, MARQUES J P, RUIZ M G, et al. A study on the behavior of bubbles of A 2D gas-solid fluidized bed using digital image analysis[J]. Chemical Engineering and Processing, 2003, 42(1):9-14. |
[24] | ZI C, LUNGU M, HUANG Z L, et al. Investigation of unstable solids circulation behavior in a circulating fluidized bed with sweeping bend return using pressure frequency analysis[J]. Powder Technology, 2016, 294:159-167. |
[25] | WANG Q C, ZHANG K, REN J T, et al. Pressure fluctuation in a gas-solid fluidized bed of Geldart B classification particle[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6):763-768. |
[26] | YANG J. Analysis of the relationship of CFBB minimum fluidization air flow in cold and hot positions[J]. Boiler Manufacturing, 2000, 11(4):30-33. |
[27] | STEWART P S D, DAVIDSON J F. Slug flow in fluidized beds[J]. Powder Technology, 1967, 29(1):255-265. |
[28] | CHEN Z D, CHEN X P, WU Y, et al. Study on minimum fluidization velocity at elevated temperature[J]. Proceeding of the CSEE, 2010, 30(14):21-25. |
[29] | 李彦华. 基于傅里叶变换的流化床压力波动的实验研究[D]. 天津:天津科技大学, 2011. LI Y H. Experimental study on pressure fluctuations in fluidized bed by Fourier transform[D]. Tianjin:Tianjin University of Science and Technology, 2009. |
[30] | BAI D, BI H T, GRACE J R. Chaotic behavior of fluidized beds based on pressure voidage fluctuations[J]. America Institute of Chemical Engineers, 1997, 43(5):1357-1367. |
[31] | JOHNSSON F, ZIJERVELD R C, SCHOUTEN J C, et al. Characterization of fluidization regimes by times-series analysis of pressure fluctuations[J]. International Journal of Multiphase Flow, 2000, 26(4):663-715. |
[32] | JAIBOON O, CHALERMSINSUWAN B, MEKASUT L, et al. Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes[J]. Powder Technology, 2013, 233(2):215-226. |
[33] | ZHEN L, WANG X P, HUANG H, et al. Wavelet analysis of pressure fluctuation signals in a gas-solid fluidized bed[J]. Journal of Zhejiang University Science, 2002, 3(1):52-56. |
[34] | 兰静. 基于小波变换的鼓泡流化床压力波动特性试验研究[J]. 东北电力技术, 2009, 30(6):1-5. LAN J. Test research on pressure fluctuation characteristics of bubbling fluidized bed based on wavelet transform[J]. Northeast Electrical Power Technology, 2009, 30(6):1-5. |
[35] | 岑可法, 倪明江, 骆仲泱, 等. 循环流化床锅炉理论设计与运行[M]. 北京:中国电力出版社, 1998:10-22. CEN K F, NI M J, LUO Z Y, et al. Theoretical Design and Operation of Circulating Fluidized Bed Boiler[M]. Beijing:China Electrical Power Press, 1998:10-22. |
[1] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[2] | WU Yingya, PENG Li, GAO Jinsen, LAN Xingying. Numerical simulation of gas-solid bubbling bed and bubble characteristics based on EMMS drag model [J]. CIESC Journal, 2016, 67(8): 3259-3267. |
[3] | FAN Xiaoqiang, HE Lelu, HUANG Zhengliang, YE Xiangqun, LI Yong, WANG Jingdai, YANG Yongrong. Measurement of flooding gas velocity in packed column by acoustic emission technique [J]. CIESC Journal, 2016, 67(2): 476-484. |
[4] | ZHOU Faqi, CHEN Yong, WEI Zhigang, YAN Chaoyu, SUN Guogang, WEI Yaodong. Wavelet analysis of dynamic pressure in T-abrupt of CFB riser [J]. CIESC Journal, 2015, 66(5): 1697-1703. |
[5] | WU Yingya, LAN Xingying, GAO Jinsen. Analysis of flow field intermittency and coherent structure of particles based on DEM simulation of gas-solids bubbling bed [J]. CIESC Journal, 2014, 65(7): 2724-2732. |
[6] | . Cluster Frequency and Existence Time in Dense Transport Bed [J]. CIESC Journal, 2013, 64(5): 0-0. |
[7] | . Cluster Frequency and Existence Time in Dense Transport Bed [J]. CIESC Journal, 2013, 64(5): 0-0. |
[8] | ZENG Xin, YANG Shaojun, WANG Shengdian, ZHAO Kai, XU Xiang, XIAO Yunhan. Cluster frequency and existence time in dense transport bed [J]. CIESC Journal, 2013, 64(5): 1614-1620. |
[9] | LI Jinrong1,2,DAI Liankui1,RUAN Hua1. Raman spectral quantitative analysis based on peaks-decomposition [J]. CIESC Journal, 2012, 63(7): 2128-2135. |
[10] | LIU Xinhong, BAO Yuyun, LI Zhipeng, GAO Zhengming. Analysis of Turbulence Structure in the Stirred Tank with a Deep Hollow Blade Disc Turbine by Time-resolved PIV [J]. , 2010, 18(4): 588-599. |
[11] | LIN Liangcheng,ZHENG Zhong,CHEN Wei,ZHANG Jin. Numerical simulation of bubbling behaviors in a bubbling fluidized bed with various solid-phase viscosity models [J]. , 2010, 29(12): 2242-. |
[12] | XIA Chunming, ZHENG Jianrong, J.Howell. Isolation of whole-plant multiple oscillations via non-negative spectral decomposition [J]. , 2007, 15(3): 353-360. |
[13] | GENGYanfeng,ZHENGJinwu,SHITianming,SHIGang. Wet gas meter development based on slotted orifice couple and neural network techniques [J]. , 2007, 15(2): 281-285. |
[14] | ZHANGJiansheng,LÜ,Junfu, WANGXin,ZHANGHai,YUEGuangxi,SUDAToshiyuki,SATOJunichi. Characterization of pressure signals in fluidized beds loaded with large particles using Wigner distribution analysis: Feasibility of diagnosis of agglomeration [J]. , 2007, 15(1): 24-29. |
[15] |
HE Jianxun, HAN Yuanyuan, GAO Aihua, ZHOU Yinsui, LU Zhiguo.
Investigation on Methane Decomposition and the Formation of C2 Hydrocarbons in DC Discharge Plasma by Emission Spectroscopy [J]. , 2004, 12(1): 149-151. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 367
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||