[1] |
HUANG L M. New progresses in safe, clean and efficient development technologies for high-sulfur gas reservoirs[J]. Natural Gas Industry B, 2015, 2(4):360-367.
|
[2] |
郑志红, 李登华, 白森舒, 等. 四川盆地天然气资源潜力[J]. 中国石油勘探, 2017, 22(3):12-20. ZHENG Z H, LI D H, BAI S S, et al. Resource potentials of natural gas in Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(3):12-20.
|
[3] |
黄辉, 马红莲, 何仁洋, 等. 硫化氢对天然气管线内腐蚀的影响分析[J]. 管道技术与设备, 2014, (3):34-36. HUANG H, MA H L, HE R Y, et al. Analysis of the impact of natural gas pipeline internal corrosion caused by H2S[J]. Pipeline Technique & Equipment, 2014, (3):34-36.
|
[4] |
肖斌, 张伟, 李红军. 高含硫天然气净化厂风险分析[J]. 工业, 2016, (3):00019-00022. XIAO B, ZHANG W, LI H J. Risk analysis of natural gas purification plant with high sulfur content[J]. Industry, 2016, (3):19-22.
|
[5] |
WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics & Intelligent Laboratory Systems, 1987, 2(1):37-52.
|
[6] |
GELADI P, KOWALSKI B R. Partial least-squares regression:a tutorial[J]. Analytica Chimica Acta, 1985, 185(86):1-17.
|
[7] |
GE Z, SONG Z. Multivariate statistical process control:process monitoring methods and applications[M]//Multivariate Statistical Process Control. London:Springer London, 2013:23-31.
|
[8] |
张汉元, 田学民. 基于KSFDA-SVDD的非线性过程故障检测方法[J]. 化工学报, 2016, 67(3):827-832. ZHANG H Y, TIAN X M. Nonlinear process fault detection based on KSFDA and SVDD[J]. CIESC Journal, 2016, 67(3):827-832.
|
[9] |
PENG K, ZHANG K, YOU B, et al. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2615-2624.
|
[10] |
江伟, 王振雷, 王昕. 基于混合分块DMICA-PCA的全流程过程监控方法[J]. 化工学报, 2017, 68(2):759-766. JIANG W, WANG Z L, WANG X. Plant-wide process monitoring based on mixed multiblock DMICA-PCA[J]. CIESC Journal, 2017, 68(2):759-766..
|
[11] |
TOUBAKH H, SAYED-MOUCHAWEH M. Hybrid dynamic classifier for drift-like fault diagnosis in a class of hybrid dynamic systems:application to wind turbine converters[J]. Neurocomputing, 2016, 171(C):1496-1516.
|
[12] |
徐莹, 邓晓刚, 钟娜. 基于ICA混合模型的多工况过程故障诊断方法[J]. 化工学报, 2016, 67(9):3793-3803. XU Y, DENG X G, ZHONG N. A fault diagnosis method for multimode processes based on ICA mixture models[J]. CIESC Journal, 2016, 67(9):3793-3803.
|
[13] |
CHEN M C, HSU C C, MALHOTRA B, et al. An efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processes[J]. International Journal of Production Research, 2016, 54(17):1-11.
|
[14] |
WANG B, YAN X, JIANG Q. Independent component analysis model utilizing de-mixing information for improved non-Gaussian process monitoring[J]. Computers & Industrial Engineering, 2016, 94:188-200.
|
[15] |
LEE J M, YOO C K, LEE I B. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14 (5):467-485.
|
[16] |
WANG Y, FAN J, YAO Y. Online monitoring of multivariate processes using higher-order cumulants analysis[J]. Industrial & Engineering Chemistry Research, 2014, 53(11):4328-4338.
|
[17] |
仓文涛, 杨慧中. 基于主元子空间富信息重构的过程监测方法[J]. 化工学报, 2018, 69(3):1114-1120. CANG W T, YANG H Z. A process monitoring method based on informative principal component subspace reconstruction[J]. CIESC Journal, 2018, 69(3):1114-1120.
|
[18] |
樊继聪, 王友清, 秦泗钊. 联合指标独立成分分析在多变量过程故障诊断中的应用[J]. 自动化学报, 2013, 39(5):494-501. FAN J C, WANG Y Q, QIN S Z. Combined indices for ICA and their applications to multivariate process fault diagnosis[J]. Acta Automatica Sinica, 2013, 39(5):494-501.
|
[19] |
YUE H H, QIN S J. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20):4403-4414.
|
[20] |
MATTESON D S, TSAY R S. Independent component analysis via distance covariance[J]. Journal of the American Statistical Association, 2017, 112(518):623-637.
|
[21] |
XU J, YE P, LI Q, et al. Blind image quality assessment based on high order statistics aggregation[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2016, 25(9):4444-4457.
|
[22] |
GERACI G, CONGEDO P M, ABGRALL R, et al. High-order statistics in global sensitivity analysis:decomposition and model reduction[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 301(66):80-115.
|
[23] |
YUE H H, QIN S J. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20):4403-4414.
|
[24] |
MARTIN E B, MORRIS A J. Non-parametric confidence bounds for process performance monitoring charts[J]. Journal of Process Control, 1996, 6(6):349-358
|
[25] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[26] |
SONG B, SHI H B, MA Y X, et al. Multisubspace principal component analysis with local outlier factor for multimode process monitoring[J].Industrial & Engineering Chemistry Research, 2014, 53(42):16453-16464.
|
[27] |
LUO L J, BAO S Y, MAO J F, et al. Nonlinear process monitoring using data-dependent kernel global-local preserving projections[J]. Industrial & Engineering Chemistry Research, 2015, 54(44):11126-11138.
|
[28] |
田涛, 王北星. 能量系统优化技术在高含硫天然气净化中的应用研究[J]. 中外能源, 2015, 20(4):96-101. TIAN T, WANG B X. The application of energy system optimization technology in high-sulfur gas sweetening process[J]. Sino-Global Energy, 2015, 20(4):96-101.
|
[29] |
陈杰, 张新军, 褚洁, 等. MDEA+MEA天然气脱碳工艺影响因素[J]. 化工学报, 2015, 66(S2):250-256. CHEN J, ZHANG X J, CHU J, et al. Factors affecting decarbonization of natural gas with MDEA+MEA[J]. CIESC Journal, 2015, 66(S2):250-256.
|