CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2495-2502.DOI: 10.11949/0438-1157.20230360
• Process system engineering • Previous Articles Next Articles
Weiming SHAO1(), Wenxue HAN1, Wei SONG2, Yong YANG3, Can CHEN2, Dongya ZHAO1(
)
Received:
2023-04-10
Revised:
2023-05-13
Online:
2023-07-27
Published:
2023-06-05
Contact:
Dongya ZHAO
邵伟明1(), 韩文学1, 宋伟2, 杨勇3, 陈灿2, 赵东亚1(
)
通讯作者:
赵东亚
作者简介:
邵伟明(1986—),男,博士,副教授,shaoweiming@upc.edu.cn
基金资助:
CLC Number:
Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression[J]. CIESC Journal, 2023, 74(6): 2495-2502.
邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502.
输入变量 | 含义 |
---|---|
V1 | 罐区蜡油流量 |
V2 | 减压蜡油流量 |
V3 | 焦化蜡油流量 |
V4 | 加热炉燃料气流量 |
V5 | 反应蜡油流量 |
V6 | 混合氢流量 |
V7 | 反应器入口温度 |
V8 | 反应器床层温度1 |
V9 | 反应器床层温度2 |
V10 | 反应器床层温度3 |
V11 | 急冷氢流量 |
V12 | 急冷氢温度 |
V13 | 反应器出口温度 |
Table 1 Input variables of soft sensor model for sulfur content in WOHP
输入变量 | 含义 |
---|---|
V1 | 罐区蜡油流量 |
V2 | 减压蜡油流量 |
V3 | 焦化蜡油流量 |
V4 | 加热炉燃料气流量 |
V5 | 反应蜡油流量 |
V6 | 混合氢流量 |
V7 | 反应器入口温度 |
V8 | 反应器床层温度1 |
V9 | 反应器床层温度2 |
V10 | 反应器床层温度3 |
V11 | 急冷氢流量 |
V12 | 急冷氢温度 |
V13 | 反应器出口温度 |
软测量模型 | 数据分组数M | RMSE | R2 | MTT/s |
---|---|---|---|---|
P-DPMM | 1 | 0.0442 | 0.6392 | 19.9408 |
ESN | 1 | 0.0426 | 0.6647 | 8.4688 |
BHMR-1 | 1 | 0.0455 | 0.6174 | 185.5044 |
BHMR-2 | 1 | 0.0424 | 0.6674 | 196.9019 |
Dis-BHMR | 5 | 0.0355 | 0.7670 | 100.9233 |
10 | 0.0345 | 0.7804 | 54.4537 | |
15 | 0.0341 | 0.7850 | 35.9074 | |
20 | 0.0345 | 0.7796 | 28.1423 |
Table 2 Prediction accuracy and model training time of sulfur content by four soft sensor models
软测量模型 | 数据分组数M | RMSE | R2 | MTT/s |
---|---|---|---|---|
P-DPMM | 1 | 0.0442 | 0.6392 | 19.9408 |
ESN | 1 | 0.0426 | 0.6647 | 8.4688 |
BHMR-1 | 1 | 0.0455 | 0.6174 | 185.5044 |
BHMR-2 | 1 | 0.0424 | 0.6674 | 196.9019 |
Dis-BHMR | 5 | 0.0355 | 0.7670 | 100.9233 |
10 | 0.0345 | 0.7804 | 54.4537 | |
15 | 0.0341 | 0.7850 | 35.9074 | |
20 | 0.0345 | 0.7796 | 28.1423 |
1 | 秦美华, 朱红求, 李勇刚, 等. 基于STA-K均值聚类的电化学废水处理过程离子浓度软测量[J]. 化工学报, 2019, 70(9): 3458-3464. |
Qin M H, Zhu H Q, Li Y G, et al. Soft-sensor method for ion concentration of electrochemical wastewater treatment based on STA-K-means clustering[J]. CIESC Journal, 2019, 70(9): 3458-3464. | |
2 | Li Y G, Han W X, Shao W M, et al. Virtual sensing for dynamic industrial process based on localized linear dynamical system models with time-delay optimization[J]. ISA Transactions, 2023, 133: 505-517. |
3 | 闻超垚, 周平. 污水处理过程出水水质稀疏鲁棒建模[J]. 自动化学报, 2022, 48(6): 1469-1481. |
Wen C Y, Zhou P. Sparse robust modeling of effluent quality indices in wastewater treatment process[J]. Acta Automatica Sinica, 2022, 48(6): 1469-1481. | |
4 | Ge Z Q, Song Z H, Ding S X, et al. Data mining and analytics in the process industry: the role of machine learning[J]. IEEE Access, 2017, 5: 20590-20616. |
5 | 周乐, 沈程凯, 吴超, 等. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
Zhou L, Shen C K, Wu C, et al. Deep fusion feature extraction network and its application in chemical process soft sensing[J]. CIESC Journal, 2022, 73(7): 3156-3165. | |
6 | 孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93. |
Sun K, Sui L, Zhang F F, et al. Dynamic soft sensor algorithm based on nonnegative garrote and long short-term memory neural network[J]. Control Theory & Applications, 2023, 40(1): 83-93. | |
7 | Khine K L, Nyunt T S. Predictive geospatial analytics using principal component regression[J]. International Journal of Electrical and Computer Engineering (IJECE), 2020, 10(3): 2651-2658. |
8 | Liu J X, Sun D S, Chen J H. Comparative study on wavelet functional partial least squares soft sensor for complex batch processes[J]. Chemical Engineering Science, 2022, 254: 117601. |
9 | Shao W M, Ge Z Q, Song Z H. Soft-sensor development for processes with multiple operating modes based on semisupervised Gaussian mixture regression[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 2169-2181. |
10 | Shao W M, Ge Z Q, Song Z H, et al. Nonlinear industrial soft sensor development based on semi-supervised probabilistic mixture of extreme learning machines[J]. Control Engineering Practice, 2019, 91: 104098. |
11 | Wang J B, Shao W M, Song Z H. Robust inferential sensor development based on variational Bayesian student's-t mixture regression[J]. Neurocomputing, 2019, 369: 11-28. |
12 | Dong Y N, Qin S J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring[J]. Journal of Process Control, 2018, 67: 1-11. |
13 | Shang C, Huang X L, Suykens J A K, et al. Enhancing dynamic soft sensors based on DPLS: a temporal smoothness regularization approach[J]. Journal of Process Control, 2015, 28: 17-26. |
14 | Shao W M, Han W X, Li Y G, et al. Enhancing the reliability and accuracy of data-driven dynamic soft sensor based on selective dynamic partial least squares models[J]. Control Engineering Practice, 2022, 127: 105292. |
15 | Liu S T, Gao X W, He H F, et al. Soft sensor modelling of acrolein conversion based on hidden Markov model of principle component analysis and fireworks algorithm[J]. The Canadian Journal of Chemical Engineering, 2019, 97(12): 3052-3062. |
16 | Ge Z Q, Chen X R. Dynamic probabilistic latent variable model for process data modeling and regression application[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 323-331. |
17 | Zhou L, Zheng J Q, Ge Z Q, et al. Multimode process monitoring based on switching autoregressive dynamic latent variable model[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8184-8194. |
18 | Shang C, Huang B, Yang F, et al. Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling[J]. AIChE Journal, 2015, 61(12): 4126-4139. |
19 | Ma Y J, Huang B. Bayesian learning for dynamic feature extraction with application in soft sensing[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7171-7180. |
20 | 邵伟明, 葛志强, 李浩, 等. 基于循环神经网络的半监督动态软测量建模方法[J]. 电子测量与仪器学报, 2019, 33(11): 7-13. |
Shao W M, Ge Z Q, Li H, et al. Semisupervised dynamic soft sensing approaches based on recurrent neural network[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(11): 7-13. | |
21 | Yuan X F, Li L, Shardt Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4404-4414. |
22 | 刘国海, 江兴科, 梅从立. 基于连续隐Markov模型的发酵过程软测量方法[J]. 控制与决策, 2011, 26(11): 1753-1756, 1760. |
Liu G H, Jiang X K, Mei C L. Research on soft sensing method based on continuous hidden Markov model in fermentation process[J]. Control and Decision, 2011, 26(11): 1753-1756, 1760. | |
23 | Shao W M, Xiao C F, Wang J B, et al. Real-time estimation of quality-related variable for dynamic and non-Gaussian process based on semisupervised Bayesian HMM[J]. Journal of Process Control, 2022, 111: 59-74. |
24 | 朱熀秋, 樊帅. 基于改进连续隐马尔可夫模型的六极径向主动磁轴承转子位移软测量[J]. 中国电机工程学报, 2021, 41(11): 3933-3943. |
Zhu H Q, Fan S. Soft-sensing modeling for rotor displacements of six-pole radial active magnetic bearing using improved continuous hidden Markov model[J]. Proceedings of the CSEE, 2021, 41(11): 3933-3943. | |
25 | Xiao C F, Han W X, Shao W M, et al. Distributed semisupervised HMM for dynamic inferential sensor development[J]. IEEE Sensors Journal, 2023, 23(3): 2737-2749. |
26 | Wang J B, Shao W M, Zhang X M, et al. Dynamic variational Bayesian student's t mixture regression with hidden variables propagation for industrial inferential sensor development[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5314-5324. |
27 | Wang L, Yang C J, Sun Y X. Multimode process monitoring approach based on moving window hidden Markov model[J]. Industrial & Engineering Chemistry Research, 2018, 57(1): 292-301. |
28 | Bishop C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006. |
29 | Shao W M, Yao L, Ge Z Q, et al. Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6362-6373. |
30 | Wang P, Yin Y C, Deng X G, et al. Semi-supervised echo state network with temporal-spatial graph regularization for dynamic soft sensor modeling of industrial processes[J]. ISA Transactions, 2022, 130: 306-315. |
31 | Yao L, Ge Z Q. Refining data-driven soft sensor modeling framework with variable time reconstruction[J]. Journal of Process Control, 2020, 87: 91-107. |
[1] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[2] | Yue HU, Shoujun MA, Xigao JIAN, Zhihuan WENG. Study on curing phthalonitrile resin with novel poly(phthalazinone ether nitrile) [J]. CIESC Journal, 2023, 74(2): 871-882. |
[3] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[4] | Le ZHOU, Chengkai SHEN, Chao WU, Beiping HOU, Zhihuan SONG. Deep fusion feature extraction network and its application in chemical process soft sensing [J]. CIESC Journal, 2022, 73(7): 3156-3165. |
[5] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[6] | Huan GAO, Guoliang DING, Faxian ZHOU, Dawei ZHUANG. Research on dynamic separation characteristics of R410A refrigerant with lubricant [J]. CIESC Journal, 2022, 73(3): 1054-1062. |
[7] | Hengyuan LIU, Haihui WANG, Jianhong XU. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen [J]. CIESC Journal, 2022, 73(1): 32-45. |
[8] | GUO Linxin, MA Yangmin, QIANG Taotao, REN Longfang. Review on structure modification of plant tannins [J]. CIESC Journal, 2021, 72(5): 2448-2464. |
[9] | SHI Shanshan, WEI Aibo, ZHANG Xiaobin. CFD simulation and experimental research on ultrasonic cavitation of liquid nitrogen [J]. CIESC Journal, 2021, 72(4): 1930-1938. |
[10] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[11] | Fanxin MENG, Jianing SUN, Yue ZHOU, Zanjun GAO, Dingbin CHENG. Modeling and validating of air cycle machine in aircraft environmental control system [J]. CIESC Journal, 2020, 71(S1): 328-334. |
[12] | Linzi YIN, Yuyin GUAN, Zhaohui JIANG, Xuemei XU. Optimal method of selecting silicon content data in blast furnace hot metal based on k-means++ [J]. CIESC Journal, 2020, 71(8): 3661-3670. |
[13] | Hongbiao ZHOU, Yu ZHANG, Xiaoying BAI, Baolian LIU, Huanyu ZHAO. Model predictive control of nonlinear system based on adaptive fuzzy neural network [J]. CIESC Journal, 2020, 71(7): 3201-3212. |
[14] | Xuejin GAO, Tengfei LIU, Zidong XU, Huihui GAO, Yongchuan YU. Intermittent process fault monitoring based on recurrent autoencoder [J]. CIESC Journal, 2020, 71(7): 3172-3179. |
[15] | Zhenmin LUO, Yong YANG, Fangming CHENG, Tao WANG, Zhuchuan CHANG, Bin SU, Man ZHANG. Experimental study on explosion limits parameters of propylene with dilution of nitrogen and carbon dioxide [J]. CIESC Journal, 2020, 71(4): 1922-1928. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||