[1] |
SINTON D. Energy:the microfluidic frontier[J]. Lab on a Chip, 2014, 14(17):3127-3134.
|
[2] |
YUAN Q, CHEN G W, YUE J. Gas-liquid microreaction technology:recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5):663-669.
|
[3] |
GROISMAN A, ENZELBERGER M, QUAKE S R. Microfluidic memory and control devices[J]. Science, 2003, 300(5621):955-958.
|
[4] |
ANBARI A, CHIEN H, DATTA S S, et al. Microfluidic model porous media:fabrication and applications[J]. Small, 2018, 14(18):1703575.
|
[5] |
ADAMO A, BEINGESSNER R L, BEHNAM M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system[J]. Science, 2016, 352(6281):61-67.
|
[6] |
骆广生, 王凯, 徐建鸿, 等. 微化工过程研究进展[J]. 中国科学:化学, 2014, 44(9):1404-1412. LUO G S, WANG K, XU J H, et al. Advances in research of microstructured chemical process[J]. Scientia Chimica, 2014, 44(9):1404-1412
|
[7] |
GAÑÁNCALVO A M, MONTANERO J M, MARTÍNBANDERAS L, et al. Building functional materials for health care and pharmacy from microfluidic principles and flow focusing[J]. Advanced Drug Delivery Reviews, 2013, 65(11/12):1447-1469.
|
[8] |
FU T T, MA Y G. Bubble formation and breakup dynamics in microfluidic devices:a review[J]. Chemical Engineering Science, 2015, 135:343-372.
|
[9] |
CAI W F, ZHANG J, ZHANG X B, et al. Enhancement of CO2 absorption under Taylor flow in the presence of fine particles[J]. Chinese Journal of Chemical Engineering, 2013, 21(2):135-143.
|
[10] |
LAPORTE M, MONTILLET A, DELLA V D, et al. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput[J]. Journal of Food Engineering, 2016, 173:25-33.
|
[11] |
AKBARI S, PIRBODAGHI T, KAMM R D, et al. A versatile microfluidic device for high throughput production of microparticles and cell microencapsulation[J]. Lab on a Chip, 2017, 17(12):2067-2075.
|
[12] |
Al-RAWASHDEH M, YU F, NIJHUIS T A, et al. Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor[J]. Chemical Engineering Journal, 2012, 207/208:645-655.
|
[13] |
KRIEL F H, WOOLLAM S, GORDON R J, et al. Numbering-up Y-Y microfluidic chips for higher-throughput solvent extraction of platinum(Ⅳ) chloride[J]. Microfluidics and Nanofluidics, 2016, 20(10):138.
|
[14] |
KOCKMANN N, GOTTSPONER M, ROBERGE D M. Scale-up concept of single-channel microreactors from process development to industrial production[J]. Chemical Engineering Journal, 2011, 167(2/3):718-726.
|
[15] |
SCHIANTI J N, CERIZE N N P, DE OLIVEIRAl A M, et al. Scaling up of rifampicin nanoprecipitation process in microfluidic devices[J]. Progress in Nanotechnology and Nanomaterials, 2013, 2(4):101-107.
|
[16] |
ZHANG L X, PENG D Y, LYU W J, et al. Uniformity of gas and liquid two phases flowing through two microchannels in parallel[J]. Chemical Engineering Journal, 2015, 263:452-460
|
[17] |
GARSTECKI P, FUERSTMAN M J, STONE H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3):437-446.
|
[18] |
SHIH R, BARDIN D, MARTZ T D, et al. Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications[J]. Lab on a Chip, 2013, 13(24):4816-4826.
|
[19] |
BARBIER V, WILLAIME H, TABELING P, et al. Producing droplets in parallel microfluidic systems[J]. Physical Review E, 2006, 74(4 Pt 2):46306.
|
[20] |
HASHIMOTO M, SHEVKOPLYAS S S, ZASON?SKA B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10):1795-1805.
|
[21] |
RIAUD A, TOSTADO C P, WANG K, et al. A facile pressure drop measurement system and its applications to gas-liquid microflows[J]. Microfluidics and Nanofluidics, 2013, 15(5):715-724.
|
[22] |
BORDBAR A, TAASSOB A, ZARNAGHSH A, et al. Slug flow in microchannels:numerical simulation and applications[J]. Journal of Industrial and Engineering Chemistry, 2018, 62:26-39.
|
[23] |
MUKHTAR U A, SAHABO A, ABBAGONI B M. Investigation of slug flow characteristics for energy harvesting applications[J]. International Journal of Engineering and Technology Innovation, 2018, 8(2):146-155.
|
[24] |
TAHA T, CUI Z F. CFD modelling of slug flow inside square capillaries[J]. Chemical Engineering Science, 2006, 61(2):665-675.
|
[25] |
CONCHOUSO D, CASTRO D, KHAN S A, et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions[J]. Lab on a Chip, 2014, 14(16):3011-3020.
|
[26] |
STOFFEL M, WAHL S, LORENCEAU E, et al. Bubble production mechanism in a microfluidic foam generator[J]. Physical Review Letters, 2012, 108(19):198302.
|
[27] |
BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2):166-188.
|
[28] |
RATULOWSKI J, CHANG H. Transport of gas bubbles in capillaries[J]. Physics of Fluids A, 1989, 10(1):1642-1655.
|
[29] |
ODY C P, BAROUD C N, DE LANGRE E. Transport of wetting liquid plugs in bifurcating microfluidic channels[J]. Journal of Colloid and Interface Science, 2007, 308(1):231-238.
|
[30] |
FU T T, MA Y G, LI H Z. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop[J]. AIChE Journal, 2014, 60(5):1920-1929.
|
[31] |
FU T T, MA Y G, FUNFSCHILLING D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12):3739-3748.
|
[32] |
CHRISTOPHER G F, NOHARUDDIN N N, TAYLOR J A, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E, 2008, 78(3):36317.
|