CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3329-3341.DOI: 10.11949/0438-1157.20230632
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Wenzhu LIU(), Heming YUN(), Baoxue WANG, Mingzhe HU, Chonglong ZHONG
Received:
2023-06-27
Revised:
2023-08-14
Online:
2023-10-18
Published:
2023-08-25
Contact:
Heming YUN
通讯作者:
云和明
作者简介:
刘文竹(1999—),女,硕士研究生,lwenzhu0503@163.com
基金资助:
CLC Number:
Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341.
刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341.
1 | 过增元. 国际传热研究前沿: 微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6. |
Guo Z Y. Frontier of heat transfer—microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6. | |
2 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
3 | Ansari D, Kim K Y. Performance analysis of double-layer microchannel heat sinks under non-uniform heating conditions with random hotspots[J]. Micromachines, 2017, 8(2): 54. |
4 | Lei Y C, Mudawar I, Chen Z Q. Computational and experimental investigation of condensation flow patterns and heat transfer in parallel rectangular micro-channels[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119158. |
5 | Osman O S, El-Zoheiry R M, Elsharnoby M, et al. Performance enhancement and comprehensive experimental comparative study of cold plate cooling of electronic servers using different configurations of mini-channels flow[J]. Alexandria Engineering Journal, 2021, 60(5): 4451-4459. |
6 | Hoang C H, Fallahtafti N, Rangarajan S, et al. Impact of fin geometry and surface roughness on performance of an impingement two-phase cooling heat sink[J]. Applied Thermal Engineering, 2021, 198: 117453. |
7 | Deng D X, Wan W, Tang Y, et al. Experimental and numerical study of thermal enhancement in reentrant copper microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 91: 656-670. |
8 | 翟玉玲, 夏国栋, 刘献飞, 等. 复杂结构微通道热沉液体强化传热过程的热力学分析[J]. 化工学报, 2014, 65(9): 3403-3409. |
Zhai Y L, Xia G D, Liu X F, et al. Thermodynamic analysis of enhanced heat transfer process in microchannel heat sinks with complex structure[J]. CIESC Journal, 2014, 65(9): 3403-3409. | |
9 | Wang H T, Chen Z H, Gao J G. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107: 870-879. |
10 | Alfaryjat A A, Mohammed H A, Adam N M, et al. Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermohydraulic characteristics[J]. International Communications in Heat and Mass Transfer, 2014, 52: 121-131. |
11 | Ryu J H, Choi D H, Kim S J. Three-dimensional numerical optimization of a manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2003, 46(9): 1553-1562. |
12 | Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
13 | Borrvall T, Petersson J. Topology optimization of fluids in Stokes flow[J]. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77-107. |
14 | 李昊, 丁晓红, 景大雷. 液冷通道分布优化设计的仿真和试验研究[J]. 机械工程学报, 2019, 55(10): 198-206. |
Li H, Ding X H, Jing D L. Experimental and numerical investigation of fluid cooling channel layout designed by topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(10): 198-206. | |
15 | 陈祥, 刘辛军. 基于RAMP插值模型结合导重法求解拓扑优化问题[J]. 机械工程学报, 2012, 48(1): 135-140. |
Chen X, Liu X J. Solving topology optimization problems based on RAMP method combined with guide-weight method[J]. Journal of Mechanical Engineering, 2012, 48(1): 135-140. | |
16 | Okkels F, Bruus H. Scaling behavior of optimally structured catalytic microfluidic reactors[J]. Physical Review E, 2007, 75: 016301. |
17 | Yaji K, Yamada T, Yoshino M, et al. Topology optimization in thermal-fluid flow using the lattice Boltzmann method[J]. Journal of Computational Physics, 2016, 307: 355-377. |
18 | 陈帆. 电池热管理系统中冷板流道的拓扑优化设计研究[D]. 镇江: 江苏科技大学, 2022. |
Chen F. Topology optimization design of cold plate runner in battery thermal management system[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. | |
19 | Matsumori T, Kondoh T, Kawamoto A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 571-581. |
20 | Lv Y, Liu S. Topology optimization and heat dissipation performance analysis of a micro-channel heat sink[J]. Meccanica, 2018, 53(15): 3693-3708. |
21 | Zou A Q, Chuan R, Qian F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 207: 118128. |
22 | Xia Y, Chen L, Luo J W, et al. Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization[J]. Applied Energy, 2023, 330: 120335. |
23 | 过增元, 魏澍, 程新广. 换热器强化的场协同原则[J]. 科学通报, 2003, 48(22): 2324-2327. |
Guo Z Y, Wei S, Cheng X G. Field synergy principle of heat exchanger strengthening[J]. Chinese Science Bulletin, 2003, 48(22): 2324-2327. | |
24 | Guo Z Y, Zhu H Y, Liang X G. Entransy—a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556. |
25 | 王定标, 王帅, 张浩然, 等. 流体拓扑优化的方法及应用综述[J]. 郑州大学学报(工学版), 2023, 44(2): 1-13. |
Wang D B, Wang S, Zhang H R, et al. Summary of methods and applications of fluid topology optimization[J]. Journal of Zhengzhou University(Engineering Science), 2023, 44(2): 1-13. | |
26 | 陈金彪. 散热器冷却通道拓扑优化设计及实验研究[D]. 西安: 西安电子科技大学, 2021. |
Chen J B. Topology optimization design and experimental study of radiator cooling channel[D]. Xi’an: Xidian University, 2021. | |
27 | Li H, Ding X H, Meng F Z, et al. Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118638. |
28 | Zhang B, Zhu J H, Gao L M. Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties[J]. Applied Thermal Engineering, 2020, 176: 115354. |
29 | Lazarov B S, Sigmund O. Filters in topology optimization based on Helmholtz‐type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. |
30 | Zhang T T, Fu Y L, Yang X Q, et al. A pseudo 3D cooling heat sink model designed by multi-objective topology optimization method[J]. Meccanica, 2022, 57(8): 2101-2116. |
31 | Zhou J H, Lu M X, Zhao Q, et al. Thermal design of microchannel heat sinks using a contour extraction based on topology optimization (CEBTO) method[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122703. |
32 | Fan J F, Ding W K, Zhang J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33-44. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||