CIESC Journal ›› 2018, Vol. 69 ›› Issue (S2): 61-67.DOI: 10.11949/j.issn.0438-1157.20181055

Previous Articles     Next Articles

Coupled thermal dynamic performance in cryogenic liquid oxygen tank under slosh excitation

LIU Zhan1,2, FENG Yuyang2,3, LEI Gang1, LI Yanzhong1,3   

  1. 1 State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing 100028, China;
    2 School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
    3 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2018-09-25 Revised:2018-09-30 Online:2018-12-31 Published:2018-12-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51806235), the China Postdoctoral Science Foundation (2018M630625) and the Research Fund of State Key Laboratory of Technologies in Space Cryogenic Propellants (SKLTSCP1812).

低温液氧贮箱晃动过程热力耦合特性

刘展1,2, 冯雨杨2,3, 雷刚1, 厉彦忠1,3   

  1. 1 航天低温推进剂技术国家重点实验室, 北京 100028;
    2 中国矿业大学力学与土木工程学院, 江苏 徐州 221116;
    3 西安交通大学能源与动力工程学院, 陕西 西安 710049
  • 基金资助:

    国家自然科学基金项目(51806235);中国博士后科学基金项目(2018M630625);航天低温推进剂技术国家重点实验室开放基金项目(SKLTSCP1812)。

Abstract:

The computational fluid dynamics (CFD) technique is used to investigate the thermal-dynamic coupled process in cryogenic liquid oxygen tank under the slosh excitations. The influences of the external environmental heat leak and the phase change occurring on the liquid-vapor interface are considered in detail. The slosh force, fluid slosh momentum, tank pressure, and fluid temperature distribution in tank caused by the external excitation are analyzed. The results show that both the slosh force suffered by tank and fluid slosh momentum have reducing trends with fluctuations under the external sinusoidal excitation. Influenced by the external slosh, the connection area between the subcooled liquid and the superheated vapor increases, so the superheated vapor is greatly cooled by the liquid, and the tank pressure decreases almost linearly with time. As for the fluid temperature monitors, while they are close to the liquid-vapor interface, the fluid sloshing has an obvious effect on the variation of monitors' temperature. In general, the temperature distribution in the tank is formed with the high temperature region in upper and low temperature region in bottom, and the high temperature in the external region and the low temperature in the interior. While as located on the top of tank, the vapor test points have a large temperature fluctuation, influenced by the top dished-head. For the bottom liquid temperature monitors, their values are larger than parts of liquid test points' temperature, with the direct heat transfer from the bottom dished-head wall.

摘要:

采用计算流体力学(CFD)技术数值研究了外部晃动激励下低温液氧贮箱内部热力耦合过程。计算中详细考虑了贮箱外部漏热以及气液相间传热的影响,分析了正弦激励对箱体所受晃动力、流体反作用晃动力矩、箱体压力以及箱内流体温度分布的影响。计算结果表明:外部正弦激励使箱体所受晃动力以及流体晃动力矩呈波动降低的变化;晃动使过冷液体对过热气相以及高温壁面产生良好的冷却作用,以致在整个过程中箱体压力近似线性降低。对于气液相温度测点,其距离界面越近,受流体晃动影响越显著。整体上,贮箱内部流体温度呈现上部高下部低、外部高内部低的分布。由于处在贮箱顶部的气相温度测点受箱体上封头影响较大,气相温度出现大幅波动;而处在贮箱底部的液相温度测点直接接受壁面对流换热,其温度值略高于其他液相测点。

CLC Number: