[1] |
CHATO D J. Cryogenic technology development for exploration missions[C]//AIAA, 2007:8-11.
|
[2] |
HASAN M M, LIN C S, VAN DRESAR N T. Self-pressurization of a flight weight liquid hydrogen storage tank subjected to low heat flux:103804[R]. NASA/TM, 1991.
|
[3] |
VAN DRESAR N T, HASAN M M, LIN C S. Self-pressurization of a flight weight liquid hydrogen tank:effects of fill level at low wall heat flux:105411[R]. NASA/TM, 1991.
|
[4] |
TIBOR L, CHARLES W. Zero-G thermodynamic venting system final report:SSD 94M0038[R]. Rockwell Aerospace Report, 1994.
|
[5] |
HASTINGS L J, TUCKER S P, FLACHBART R H. Marshall space flight center in-space cryogenic fluid management program overview[C]//AIAA, 2005:1-11.
|
[6] |
VAN OVERBEKEO T J. Thermodynamic vent system test in a low earth orbit simulation[C]//AIAA, 2004:11-14.
|
[7] |
HURLBERT E A, ROMING K A, JIMENEZ R, et al. Thermodynamic vent system for an on-orbit cryogenic reaction control engine:MSC-24543-1[R]. NASA Tech Briefs, 2012.
|
[8] |
HEDAYAT A, BAILEY J W, HASTINGS L J, et al. Test data analysis of a spray bar zero-g liquid hydrogen vent system for upper stages[J]. Advances in Cryogenic Engineering, 2004, 49:1171-1178.
|
[9] |
FLACHBART R H, HASTINGS L J, MARTIN J J. Testing of a spray bar zero gravity cryogenic vent system for upper stages[C]//AIAA, 1999.
|
[10] |
HASTINGS L J, FLACHBART R H, MARTIN J J, et al. Spray bar zero-gravity vent system for on-orbit liquid hydrogen:212926[R]. NASA/TM, 2003.
|
[11] |
FLACHBART R H, HASTINGS L J, HEDAYAT A. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2008, 5:217-222
|
[12] |
HASTINGS L J, BOLSHINSKIY L G, HEDAYAT A, et al. Liquid methane testing with a large-scale spray bar thermodynamic vent system:218197[R]. NASA/TP, 2014.
|
[13] |
朱洪来, 孙沂昆, 张阿莉, 等. 低温推进剂在轨贮存与管理技术研究[J]. 载人航天, 2015, 21(1):13-18. ZHU H L, SUN Y K, ZHANG A L, et al. Research on on-orbit storage and management technology of crogenic propellant[J]. Manned Spaceflight, 2015, 21(1):13-18.
|
[14] |
张天平. 空间低温流体贮存的压力控制技术进展[J]. 真空与低温, 2006, 12(3):125-131. ZHANG T P. The progress of pressure control technology of cryogenic liquid storage in space[J]. Vacuum & Cryogenics, 2006, 12(3):125-131.
|
[15] |
颜露, 黄永华, 吴静怡, 等. 低温推进剂在轨储存热力学排气系统TVS研究进展[J]. 低温与超导, 2015, 43(2):5-13. YAN L, HUANG Y H, WU J Y, et al. Development of thermodynamic venting system technology for cryogenic propellant storage on orbit[J]. Cryogenics & Superconductivity, 2015, 43(2):5-13.
|
[16] |
李鹏, 孙培杰, 包轶颖, 等. 低温推进剂长期在轨储存技术研究进展[J]. 载人航天, 2012, 18(1):30-36. LI P, SUN P J, BAO Y Y, et al. Cryogenic propellant long-term storage on orbit technology overview[J]. Manned Spaceflight, 2012, 18(1):30-36.
|
[17] |
冶文莲, 王小军, 王丽红, 等. 微重力下低温贮箱压力控制技术进展[J]. 低温技术, 2012, 40(6):8-12. YE W L, WANG X J, WANG L H, et al. Progress of pressure control technology of cryogenic storage tanks in microgravity[J]. Crogenics, 2012, 40(6):8-12.
|
[18] |
刘展, 厉彦忠, 王磊, 等. 低温推进剂长期在轨压力管理技术研究进展[J]. 宇航学报, 2014, 35(3):254-261. LIU Z, LI Y Z, WANG L, et al. Progress of study on long-term in-orbit pressure management technique for cryogenic propellant[J]. Journal of Astronautics, 2014, 35(3):254-261.
|
[19] |
胡伟峰, 申麟, 彭小波, 等. 低温推进剂长时间在轨的蒸发量控制关键技术分析[J]. 低温工程, 2011, (3):59-66. HU W F, SHEN L, PENG X B, et al. Key technology analysis of boil-foo control study on cryogenic propellant long-term application on orbit[J]. Crogenics, 2011, (3):59-66.
|
[20] |
马原, 厉彦忠, 王磊, 等. 低温燃料贮箱热力学排气系统优化分析与性能研究[J]. 低温与超导, 2014, 42(7):10-15. MA Y, LI Y Z, WANG L, et al. Optimized analysis and performance study on thermodynamic vent system in cryogenic fuel tank[J]. Cryogenics & Superconductivity, 2014, 42(7):10-15.
|