CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1750-1760.DOI: 10.11949/j.issn.0438-1157.20181470
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Shuang ZHANG1(),Lei ZHAO1(
),Lin GAO1,Hua LIU2
Received:
2018-12-12
Revised:
2019-02-26
Online:
2019-05-05
Published:
2019-05-05
Contact:
Lei ZHAO
通讯作者:
赵蕾
作者简介:
<named-content content-type="corresp-name">张爽</named-content>(1993—),男,硕士研究生,<email>944459447@qq.com</email>|赵蕾(1971—),女,博士,教授,<email>leizhao0308@hotmail.com</email>
基金资助:
CLC Number:
Shuang ZHANG, Lei ZHAO, Lin GAO, Hua LIU. Exploration on thermo-mechanical characteristics of energy piles with double-U pipes buried in parallel by means of numerical simulations[J]. CIESC Journal, 2019, 70(5): 1750-1760.
张爽, 赵蕾, 高林, 刘华. 并联双U形桩基埋管换热器热-力学特征的数值仿真研究[J]. 化工学报, 2019, 70(5): 1750-1760.
参数 | 数值 |
---|---|
桩基弹性模量E/GPa | 30 |
桩基热导率/(W· | 1.92 |
桩基热膨胀系数/℃-1 | 10-5 |
管壁热导率/(W· | 0.42 |
管壁比热容/(J· | 1465 |
土壤密度/(kg·m-3) | 1930 |
土壤弹性模量E/GPa | 0.015 |
土壤内摩擦角/(°) | 31 |
桩基泊松比 | 0.2 |
桩基密度/(kg·m-3) | 2500 |
桩基比热/(J· | 837 |
管壁密度/(kg·m-3) | 1100 |
土壤热导率/(W· | 1.87 |
土壤比热容/(J· | 1200 |
土壤泊松比 | 0.33 |
土壤膨胀角/(°) | 0 |
Table 1 Related parameters measured at project site
参数 | 数值 |
---|---|
桩基弹性模量E/GPa | 30 |
桩基热导率/(W· | 1.92 |
桩基热膨胀系数/℃-1 | 10-5 |
管壁热导率/(W· | 0.42 |
管壁比热容/(J· | 1465 |
土壤密度/(kg·m-3) | 1930 |
土壤弹性模量E/GPa | 0.015 |
土壤内摩擦角/(°) | 31 |
桩基泊松比 | 0.2 |
桩基密度/(kg·m-3) | 2500 |
桩基比热/(J· | 837 |
管壁密度/(kg·m-3) | 1100 |
土壤热导率/(W· | 1.87 |
土壤比热容/(J· | 1200 |
土壤泊松比 | 0.33 |
土壤膨胀角/(°) | 0 |
Fig.11 Distribution of axial force, displacements of pile body and side frictional resistances along pile depth in cases of different flow rates in heat rejection mode at the 72th hour
Fig.13 Axial force of pile body, displacement of pile body and distribution of lateral friction of piles under different length to diameter ratios in heat removal mode at the 72th hour
Fig.15 Distribution of axial forces, pile displacements and lateral frictional resistances of piles with different forms of buried pipes operating in heat removal mode at the 72th hour
1 | Morino K , Oka T . Study on heat exchanged in soil by circylating water in a steel pile[J].Energy and Buildings, 1994, 21(1): 65-78. |
2 | Donna A D , Loria A F R , Laloui L . Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads [J]. Computers & Geotechnics, 2016, 72: 126-142. |
3 | Murphy K D , Mccartney J S , Henry K S . Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations [J]. Acta Geotechnica, 2015, 10(2): 179-195. |
4 | Cecinato F , Loveridge F A . Influences on the thermal efficiency of energy piles[J]. Energy, 2015, 82: 1021-1033. |
5 | Zhao Q , Chen B , Liu F . Study on the thermal performance of several types of energy pile ground heat exchangers: U-shaped, W-shaped and spiral-shaped [J]. Energy & Buildings, 2016, 133: 335-344. |
6 | Park S , Lee D , Choi H J , et al . Relative constructability and thermal performance of cast-in-place concrete energy pile: coil-type GHEX (ground heat exchanger)[J]. Energy, 2015, 81: 56-66. |
7 | Zarrella A , Carli M D , Galgaro A . Thermal performance of two types of energy foundation pile: helical pipe and triple U-tube [J]. Applied Thermal Engineering, 2013, 61(2): 301-310. |
8 | Xin L I , Fang L , Fang Z H , et al . Coil heat source model for embedded spiral tube-based geothermal heat exchangers and its analytical solutions[J]. Journal of Engineering for Thermal Energy & Power, 2011, 26(4): 475-345. |
9 | Faizal M , Bouazza A , Rao M S . Heat transfer enhancement of geothermal energy piles [J]. Renewable & Sustainable Energy Reviews, 2016, 57: 16-33. |
10 | 赵海丰, 桂树强, 李强, 等 . 螺旋型埋管能源桩桩内温度场分布特征及其影响因素分析[J]. 长江科学院院报, 2017, 34(8): 153-158. |
Zhao H F , Gui S Q , Li Q , et al . Analysis of temperature field distribution characteristics and influencing factors in spiral buried energy piles[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8): 153-158. | |
11 | Eskilson P . Thermal analysis of heat extraction boreholes [D]. Lund, Sweden: Lund University, 1987. |
12 | Cui P , Li X , Man Y , et al . Heat transfer analysis of pile geothermal heat exchangers with spiral coils[J]. Apply Energy, 2011, 88(11): 4113-4119. |
13 | Selamat S , Miyara A , Kariya K . Numerical study of horizontal ground heat exchangers for design optimization[J].Renewable Energy, 2016, 95: 561-573. |
14 | Cane R L D , Forgas D A . Modeling of GSHP performance [J].ASHRAE Trans., 1991, 97(1): 909-925. |
15 | Dia N R , Cui P , Liu J H , et a1 . R&D of the ground-coupled heat pump technology in China[J]. Frontiers of Energy and Power Engineering in China, 2010, 4(1): 47-54. |
16 | Zhang W K , Yang H X , Lu L , et al . Investigation on heat transfer around buried coils of pile foundation heat exchangers for ground-coupled heat pump applications[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6023-6031. |
17 | Wang C L , Liu H L , Kong G Q , et al . Different types of energy piles with heating–cooling cycles[J]. Geotechnical Engineering, 2017, 170(3): 1-12. |
18 | Gashti E H N , MalasKa M , Kujala K . Evaluation of thermo-mechanical behaviour of composite energy piles during heating/cooling operations [J]. Engineering Structures, 2014, 75(2): 363-373. |
19 | 赵强 . 螺旋埋管能量桩换热器的传热研究[D].济南: 山东大学, 2018. |
Zhao Q . Study on heat transfer of spiral buried energy pile heat exchanger [D]. Jinan: Shandong University, 2018. | |
20 | 杨涛, 花永盛, 刘律智 . 悬浮能量桩热-力学基本特性的数值模拟[J]. 防灾减灾工程学报, 2017, (4): 518 - 524. |
Yang T , Hua Y S , Liu L Z . Numerical simulation of the basic characteristics of thermal-mechanical properties of suspended energy piles[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, (4): 518-524. | |
21 | Brandl H . Energy foundations and thermo-active ground structures [J]. Geotechnique. 2006, 56(2): 81-122. |
22 | Yuan L C , Jie Z , Fan R M . Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system[J]. Energy Conversion and Management, 2018, 178: 200-216. |
23 | Lazaros A , Paul C , Georgios F . A review of the design aspects of ground heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 753-773. |
24 | 黄旭, 孔纲强, 刘汉龙, 等 .不封底PCC能量桩与传统能量桩换热效率对比研究[J].防灾减灾工程学报, 2018, 38(5): 867-873. |
Huang X , Kong G Q , Liu H L , et al . Comparative study on heat transfer efficiency between PCC energy piles and traditional energy piles without sealing [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 867-873. | |
25 | Laloui L , Moreni M , Vulliet L . Comportement d'un pieu bi-fonction, fondation et échangeur de chaleur[J]. Canadian Geotechnical Journal, 2003, 40(2): 388-402(15). |
26 | Bourne -Webb P G , Amatya B , Soga K , et al . Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Geotechnique, 2009, 59(3): 237-248. |
27 | 桂树强, 程晓辉 .能源桩换热过程中结构响应原位试验研究[J].岩土工程学报, 2014, 36(6): 1087-1094. |
Gui S Q , Cheng X H . In-situ experimental study on structural response of energy piles during heat transfer[J].Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1087-1094. | |
28 | Go G H , Lee S R , Yoon S , et al . Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects [J]. Applied Energy, 2014, 125: 165-178. |
29 | 王成龙, 刘汉龙, 孔纲强, 等 . 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91. |
Wang C L , Liu H L , Kong G Q , et al . Model test study on thermodynamic characteristics of energy piles under different buried pipes[J]. Engineering Mechanics, 2017, 34(1): 85-91. | |
30 | Batini N , Loria A F R , Conti P , et al . Energy and geotechnical behaviour of energy piles for different design solutions [J]. Applied Thermal Engineering, 2015, 86: 199-213. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 315
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||